These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 14991110)
1. Transfer of resistance against the beet cyst nematode from radish (Raphanus sativus) to rape (Brassica napus) by monosomic chromosome addition. Peterka H; Budahn H; Schrader O; Ahne R; Schütze W Theor Appl Genet; 2004 Jun; 109(1):30-41. PubMed ID: 14991110 [TBL] [Abstract][Full Text] [Related]
2. Molecular mapping in oil radish (Raphanus sativus L.) and QTL analysis of resistance against beet cyst nematode (Heterodera schachtii). Budahn H; Peterka H; Mousa MA; Ding Y; Zhang S; Li J Theor Appl Genet; 2009 Feb; 118(4):775-82. PubMed ID: 19050847 [TBL] [Abstract][Full Text] [Related]
3. Size and location of radish chromosome regions carrying the fertility restorer Rfk1 gene in spring turnip rape. Niemelä T; Seppänen M; Badakshi F; Rokka VM; Heslop-Harrison JS Chromosome Res; 2012 Apr; 20(3):353-61. PubMed ID: 22476396 [TBL] [Abstract][Full Text] [Related]
4. Zhong X; Zhou Q; Cui N; Cai D; Tang G Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30965683 [TBL] [Abstract][Full Text] [Related]
5. Challenges to grow oilseed rape Brassica napus in sugar beet rotations. Stefanovska T; Pidlisnyuk V Commun Agric Appl Biol Sci; 2009; 74(2):573-9. PubMed ID: 20222620 [TBL] [Abstract][Full Text] [Related]
6. Genome discrimination in progeny of interspecific hybrids between Brassica napus and Raphanus raphanistrum. Benabdelmouna A; Guéritaine G; Abirached-Darmency M; Darmency H Genome; 2003 Jun; 46(3):469-72. PubMed ID: 12834064 [TBL] [Abstract][Full Text] [Related]
7. Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm.) into the Brassica napus L. gene pool through intergeneric somatic hybridization with Raphanus sativus L. Lelivelt CL; Krens FA Theor Appl Genet; 1992 Apr; 83(6-7):887-94. PubMed ID: 24202768 [TBL] [Abstract][Full Text] [Related]
8. Lack of stable inheritance of introgressed transgene from oilseed rape in wild radish. Al Mouemar A; Darmency H Environ Biosafety Res; 2004; 3(4):209-14. PubMed ID: 16028797 [TBL] [Abstract][Full Text] [Related]
9. [Genomic in situ hybridization in intergeneric hybrids between Raphanus sativus and Brassica oleracea]. Cheng YG; Wu JS; Hua YW; Zhang MH; Chen HG Yi Chuan; 2006 Jul; 28(7):858-64. PubMed ID: 16825175 [TBL] [Abstract][Full Text] [Related]
10. Gene Introgression in Weeds Depends on Initial Gene Location in the Crop: Adamczyk-Chauvat K; Delaunay S; Vannier A; François C; Thomas G; Eber F; Lodé M; Gilet M; Huteau V; Morice J; Nègre S; Falentin C; Coriton O; Darmency H; Alrustom B; Jenczewski E; Rousseau-Gueutin M; Chèvre AM Genetics; 2017 Jul; 206(3):1361-1372. PubMed ID: 28533439 [TBL] [Abstract][Full Text] [Related]
11. Global gene expression perturbations in rapeseed due to the introduction of alien radish chromosomes. Shao Y; Pan Q; Zhang D; Kang L; Li Z J Genet; 2021; 100():. PubMed ID: 34187972 [TBL] [Abstract][Full Text] [Related]
12. Hybridization between oilseed rape (Brassica napus) and different populations and species of Raphanus. Ammitzbøll H; Bagger Jørgensen R Environ Biosafety Res; 2006; 5(1):3-13. PubMed ID: 16978570 [TBL] [Abstract][Full Text] [Related]
13. Modelling gene flow between oilseed rape and wild radish. I. Evolution of chromosome structure. Chèvre AM; Adamczyk K; Eber F; Huteau V; Coriton O; Letanneur JC; Laredo C; Jenczewski E; Monod H Theor Appl Genet; 2007 Jan; 114(2):209-21. PubMed ID: 17091264 [TBL] [Abstract][Full Text] [Related]
14. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L. Zhan Z; Nwafor CC; Hou Z; Gong J; Zhu B; Jiang Y; Zhou Y; Wu J; Piao Z; Tong Y; Liu C; Zhang C PLoS One; 2017; 12(5):e0177470. PubMed ID: 28505203 [TBL] [Abstract][Full Text] [Related]
15. USE OF GREEN MANURE CROPS AND SUGAR BEET VARIETIES TO CONTROL HETERODERA BETAE. Raaijmakers E Commun Agric Appl Biol Sci; 2014; 79(2):309-20. PubMed ID: 26084110 [TBL] [Abstract][Full Text] [Related]
16. Evaluating resistant brassica trap crops to manage Heterodera schachtii (Schmidt) infestations in eastern England. Wright AJ; Back MA; Stevens M; Sparkes DL Pest Manag Sci; 2019 Feb; 75(2):438-443. PubMed ID: 29998541 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide identification and characterization of NBS-encoding genes in Raphanus sativus L. and their roles related to Fusarium oxysporum resistance. Ma Y; Chhapekar SS; Lu L; Oh S; Singh S; Kim CS; Kim S; Choi GJ; Lim YP; Choi SR BMC Plant Biol; 2021 Jan; 21(1):47. PubMed ID: 33461498 [TBL] [Abstract][Full Text] [Related]
18. Genetic characterization of a new radish introgression line carrying the restorer gene for Ogura CMS in Brassica napus. Wang T; Guo Y; Wu Z; Xia S; Hua S; Tu J; Li M; Chen W PLoS One; 2020; 15(7):e0236273. PubMed ID: 32722687 [TBL] [Abstract][Full Text] [Related]
19. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.). He Q; Cai Z; Hu T; Liu H; Bao C; Mao W; Jin W BMC Plant Biol; 2015 Apr; 15():105. PubMed ID: 25928652 [TBL] [Abstract][Full Text] [Related]
20. Development of crop-specific transposable element (SINE) markers for studying gene flow from oilseed rape to wild radish. Prieto JL; Pouilly N; Jenczewski E; Deragon JM; Chèvre AM Theor Appl Genet; 2005 Aug; 111(3):446-55. PubMed ID: 15942756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]