BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 14991396)

  • 1. Sapling growth and survivorship as affected by light and flooding in a river floodplain forest of southeast Texas.
    Lin J; Harcombe PA; Fulton MR; Hall RW
    Oecologia; 2004 May; 139(3):399-407. PubMed ID: 14991396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sapling growth and survivorship as a function of light in a mesic forest of southeast Texas, USA.
    Lin J; Harcombe PA; Fulton MR; Hall RW
    Oecologia; 2002 Aug; 132(3):428-435. PubMed ID: 28547421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of floodplain forest species to spatially condensed gradients: a test of the flood-shade tolerance tradeoff hypothesis.
    Battaglia LL; Sharitz RR
    Oecologia; 2006 Feb; 147(1):108-18. PubMed ID: 16187107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO
    Naumburg E; Ellsworth DS
    Oecologia; 2000 Feb; 122(2):163-174. PubMed ID: 28308370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sapling biomass allocation and growth in the understory of a deciduous hardwood forest.
    Delucia E; Sipe T; Herrick J; Maherali H
    Am J Bot; 1998 Jul; 85(7):955. PubMed ID: 21684979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit.
    Chmura DJ; Modrzyński J; Chmielarz P; Tjoelker MG
    Plant Biol (Stuttg); 2017 Mar; 19(2):172-182. PubMed ID: 27981788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale canopy opening causes decreased photosynthesis in the saplings of shade-tolerant conifer, Abies veitchii.
    Mitamura M; Yamamura Y; Nakano T
    Tree Physiol; 2009 Jan; 29(1):137-45. PubMed ID: 19203939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon stress causes earlier budbreak in shade-tolerant species and delays it in shade-intolerant species.
    Piper FI; Fajardo A
    Am J Bot; 2023 Mar; 110(3):1-11. PubMed ID: 36696584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance.
    Lilles EB; Astrup R; Lefrançois ML; David Coates K
    Tree Physiol; 2014 Dec; 34(12):1334-47. PubMed ID: 25422385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.
    Villagra M; Campanello PI; Montti L; Goldstein G
    Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of flooding duration and aeration on saplings of ten hardwood floodplain forest species.
    Schindler M; Jungmann L; Donath TW; Ludewig K
    PLoS One; 2020; 15(6):e0234936. PubMed ID: 32603350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analytical model of stand dynamics as a function of tree growth, mortality and recruitment: the shade tolerance-stand structure hypothesis revisited.
    Zavala MA; Angulo O; Bravo de la Parra R; López-Marcos JC
    J Theor Biol; 2007 Feb; 244(3):440-50. PubMed ID: 17056070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of carbon storage in relation to shade tolerance in southern South American species.
    Piper FI
    Am J Bot; 2015 Sep; 102(9):1442-52. PubMed ID: 26362192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drivers of Tree Growth, Mortality and Harvest Preferences in Species-Rich Plantations for Smallholders and Communities in the Tropics.
    Nguyen H; Vanclay J; Herbohn J; Firn J
    PLoS One; 2016; 11(10):e0164957. PubMed ID: 27764186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unlocking the forest inventory data: relating individual tree performance to unmeasured environmental factors.
    Lichstein JW; Dushoff J; Ogle K; Chen A; Purves DW; Caspersen JP; Pacala SW
    Ecol Appl; 2010 Apr; 20(3):684-99. PubMed ID: 20437956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximity signal and shade avoidance differences between early and late successional trees.
    Gilbert IR; Jarvis PG; Smith H
    Nature; 2001 Jun; 411(6839):792-5. PubMed ID: 11459056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.
    Modrzyński J; Chmura DJ; Tjoelker MG
    Tree Physiol; 2015 Aug; 35(8):879-93. PubMed ID: 26116924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary forest dynamics in lowland dipterocarp forest at Danum Valley, Sabah, Malaysia, and the role of the understorey.
    Newbery DM; Kennedy DN; Petol GH; Madani L; Ridsdale CE
    Philos Trans R Soc Lond B Biol Sci; 1999 Nov; 354(1391):1763-82. PubMed ID: 11605620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinhibition and drought in Mediterranean woody saplings: scaling effects and interactions in sun and shade phenotypes.
    Valladares F; Dobarro I; Sánchez-Gómez D; Pearcy RW
    J Exp Bot; 2005 Jan; 56(411):483-94. PubMed ID: 15569705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf area accumulation helps juvenile evergreen trees tolerate shade in a temperate rainforest.
    Lusk CH
    Oecologia; 2002 Jul; 132(2):188-196. PubMed ID: 28547351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.