These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 14991466)

  • 1. Presence of different arbuscular mycorrhizal infection patterns in roots of Lotus glaber plants growing in the Salado River basin.
    Sannazzaro AI; Ruiz OA; Albertó E; Menéndez AB
    Mycorrhiza; 2004 Apr; 14(2):139-42. PubMed ID: 14991466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil.
    García IV; Mendoza RE
    Mycorrhiza; 2007 May; 17(3):167-174. PubMed ID: 17151877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological types of arbuscular mycorrhizal fungi in roots of weeds on vacant land.
    Yamato M
    Mycorrhiza; 2004 Apr; 14(2):127-31. PubMed ID: 12774218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient.
    Escudero V; Mendoza R
    Mycorrhiza; 2005 Jun; 15(4):291-9. PubMed ID: 15517421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic plasticity with respect to salt stress response by Lotus glaber: the role of its AM fungal and rhizobial symbionts.
    Echeverria M; Scambato AA; Sannazzaro AI; Maiale S; Ruiz OA; Menéndez AB
    Mycorrhiza; 2008 Sep; 18(6-7):317-29. PubMed ID: 18654803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L.
    Martin CA; Stutz JC
    Mycorrhiza; 2004 Aug; 14(4):241-4. PubMed ID: 12938029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of heavy metals and nutrients present in soil and native plants with arbuscular mycorrhizae on the riverside in the Matanza-Riachuelo River Basin (Argentina).
    Mendoza RE; García IV; de Cabo L; Weigandt CF; Fabrizio de Iorio A
    Sci Total Environ; 2015 Feb; 505():555-64. PubMed ID: 25461058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arbuscular mycorrhizas in cycads of southern India.
    Muthukumar T; Udaiyan K
    Mycorrhiza; 2002 Aug; 12(4):213-7. PubMed ID: 12189476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicus-Glomus intraradices mycorrhizal symbiosis.
    Vijayakumar V; Liebisch G; Buer B; Xue L; Gerlach N; Blau S; Schmitz J; Bucher M
    Plant Cell Environ; 2016 Feb; 39(2):393-415. PubMed ID: 26297195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta.
    Wang FY; Liu RJ; Lin XG; Zhou JM
    Mycorrhiza; 2004 Apr; 14(2):133-7. PubMed ID: 12827474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza.
    Sannazzaro AI; Echeverría M; Albertó EO; Ruiz OA; Menéndez AB
    Plant Physiol Biochem; 2007 Jan; 45(1):39-46. PubMed ID: 17303429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arbuscular mycorrhizal fungi associated with common pteridophytes in Dujiangyan, southwest China.
    Zhang Y; Guo LD; Liu RJ
    Mycorrhiza; 2004 Feb; 14(1):25-30. PubMed ID: 14523631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of defoliation intensities on plant biomass, nutrient uptake and arbuscular mycorrhizal symbiosis in Lotus tenuis growing in a saline-sodic soil.
    García I; Mendoza R
    Plant Biol (Stuttg); 2012 Nov; 14(6):964-71. PubMed ID: 22512871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships among soil properties, plant nutrition and arbuscular mycorrhizal fungi-plant symbioses in a temperate grassland along hydrologic, saline and sodic gradients.
    García IV; Mendoza RE
    FEMS Microbiol Ecol; 2008 Mar; 63(3):359-71. PubMed ID: 18205811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils.
    Landwehr M; Hildebrandt U; Wilde P; Nawrath K; Tóth T; Biró B; Bothe H
    Mycorrhiza; 2002 Aug; 12(4):199-211. PubMed ID: 12189475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome profiling of Lotus japonicus roots during arbuscular mycorrhiza development and comparison with that of nodulation.
    Deguchi Y; Banba M; Shimoda Y; Chechetka SA; Suzuri R; Okusako Y; Ooki Y; Toyokura K; Suzuki A; Uchiumi T; Higashi S; Abe M; Kouchi H; Izui K; Hata S
    DNA Res; 2007 Jun; 14(3):117-33. PubMed ID: 17634281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Host-related variability in arbuscular mycorrhizal fungal structures in roots of Hedera rhombea, Rubus parvifolius, and Rosa multiflora under controlled conditions.
    Matekwor Ahulu E; Andoh H; Nonaka M
    Mycorrhiza; 2007 Mar; 17(2):93-101. PubMed ID: 17111164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-occurrence of Arum- and Paris-type morphologies of arbuscular mycorrhizae in cucumber and tomato.
    Kubota M; McGonigle TP; Hyakumachi M
    Mycorrhiza; 2005 Mar; 15(2):73-7. PubMed ID: 15007710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field response of wheat to arbuscular mycorrhizal fungi and drought stress.
    Al-Karaki G; McMichael B; Zak J
    Mycorrhiza; 2004 Aug; 14(4):263-9. PubMed ID: 12942358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation.
    Kojima T; Saito K; Oba H; Yoshida Y; Terasawa J; Umehara Y; Suganuma N; Kawaguchi M; Ohtomo R
    Plant Cell Physiol; 2014 May; 55(5):928-41. PubMed ID: 24492255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.