These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 1499157)

  • 1. Genetic characterization of Tetrahymena thermophila mutants unable to secrete capsules.
    Gutiérrez JC; Orias E
    Dev Genet; 1992; 13(2):160-6. PubMed ID: 1499157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conjugation rescue of exocytosis mutants in Tetrahymena thermophila indicates the presence of functional intermediates in the regulated secretory pathway.
    Sauer MK; Kelly RB
    J Eukaryot Microbiol; 1995; 42(2):173-83. PubMed ID: 7757059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic characterization of the secretory mutant MS-1 of Tetrahymena thermophila: vacuolarization and block in secretion of lysosomal hydrolases are caused by a single gene mutation.
    Hünseler P; Tiedtke A
    Dev Genet; 1992; 13(2):167-73. PubMed ID: 1499158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunocytochemical analysis of secretion mutants of Tetrahymena using a mucocyst-specific monoclonal antibody.
    Turkewitz AP; Kelly RB
    Dev Genet; 1992; 13(2):151-9. PubMed ID: 1499156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the mating type locus of Tetrahymena thermophila: meiotic linkage of mat to the ribosomal RNA gene.
    Bleyman LK; Baum MP; Bruns PJ; Orias E
    Dev Genet; 1992; 13(1):34-40. PubMed ID: 1395139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation affecting cell separation and macronuclear resorption during conjugation in Tetrahymena thermophila: early expression of the zygotic genotype.
    Kaczanowski A
    Dev Genet; 1992; 13(1):58-65. PubMed ID: 1395143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conjugation rescue of an exocytosis-competent membrane microdomain in Tetrahymena thermophila mutants.
    Satir BH; Reichman M; Orias E
    Proc Natl Acad Sci U S A; 1986 Nov; 83(21):8221-5. PubMed ID: 3464949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila.
    Kuppannan A; Jiang YY; Maier W; Liu C; Lang CF; Cheng CY; Field MC; Zhao M; Zoltner M; Turkewitz AP
    PLoS Genet; 2022 May; 18(5):e1010194. PubMed ID: 35587496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in genes encoding inner arm dynein heavy chains in Tetrahymena thermophila lead to axonemal hypersensitivity to Ca2+.
    Liu S; Hennessey T; Rankin S; Pennock DG
    Cell Motil Cytoskeleton; 2005 Nov; 62(3):133-40. PubMed ID: 16173097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locus-dependent profiles of the rescue of nonexcitable behavioral mutants during conjugation in Tetrahymena thermophila.
    Takahashi M
    Dev Genet; 1992; 13(2):174-9. PubMed ID: 1499159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal localization of an exocytosis mutant in Tetrahymena thermophila.
    Bleyman LK; Satir BH
    J Protozool; 1990; 37(6):471-2. PubMed ID: 2086779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and genetic mapping of CHL genes controlling mitotic chromosome transmission in yeast.
    Kouprina N; Tsouladze A; Koryabin M; Hieter P; Spencer F; Larionov V
    Yeast; 1993 Jan; 9(1):11-9. PubMed ID: 8442383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and ultrastructural characterization of secretory mutants of Tetrahymena thermophila.
    Orias E; Flacks M; Satir BH
    J Cell Sci; 1983 Nov; 64():49-67. PubMed ID: 6662863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An aspartyl cathepsin, CTH3, is essential for proprotein processing during secretory granule maturation in Tetrahymena thermophila.
    Kumar S; Briguglio JS; Turkewitz AP
    Mol Biol Cell; 2014 Aug; 25(16):2444-60. PubMed ID: 24943840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Isolation and primary identification of methylotrophic yeast Hansenula polymorpha mutants for peroxisome biogenesis].
    Kurbatova EM; Dutova TA; Serkova NN; Rabinovich IaM; Trotsenko Iu
    Genetika; 2004 May; 40(5):592-8. PubMed ID: 15272555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive changes in the locations and sequence content of developmentally deleted DNA between Tetrahymena thermophila and its closest relative, T. malaccensis.
    Huvos PE
    J Eukaryot Microbiol; 2007; 54(1):73-82. PubMed ID: 17300523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A temperature-sensitive cell cycle arrest mutation affecting H1 phosphorylation and nuclear localization of a small heat shock protein in Tetrahymena thermophila.
    Thatcher TH; Gorovsky MA
    Exp Cell Res; 1993 Dec; 209(2):261-70. PubMed ID: 8262144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole Genome Sequencing Identifies a Novel Factor Required for Secretory Granule Maturation in Tetrahymena thermophila.
    Kontur C; Kumar S; Lan X; Pritchard JK; Turkewitz AP
    G3 (Bethesda); 2016 Aug; 6(8):2505-16. PubMed ID: 27317773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically sorting a collection of Tetrahymena mutants.
    Orias E; Hamilton EP
    Methods Cell Biol; 2000; 62():253-63. PubMed ID: 10503196
    [No Abstract]   [Full Text] [Related]  

  • 20. An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in
    Kaur H; Sparvoli D; Osakada H; Iwamoto M; Haraguchi T; Turkewitz AP
    Mol Biol Cell; 2017 Jun; 28(11):1551-1564. PubMed ID: 28381425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.