These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 14991657)

  • 1. Biocatalytic transformation of petroporphyrins by chemical modified cytochrome C.
    García-Arellano H; Buenrostro-Gonzalez E; Vazquez-Duhalt R
    Biotechnol Bioeng; 2004 Mar; 85(7):790-8. PubMed ID: 14991657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical modification of hemoglobin improves biocatalytic oxidation of PAHs.
    Torres E; Vazquez-Duhalt R
    Biochem Biophys Res Commun; 2000 Jul; 273(3):820-3. PubMed ID: 10891330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocatalytic removal of nickel and vanadium from petroporphyrins and asphaltenes.
    Mogolloń L; Rodríguez R; Larrota W; Ortiz C; Torres R
    Appl Biochem Biotechnol; 1998; 70-72():765-77. PubMed ID: 18576040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of chloroperoxidase by polyethylene glycols in aqueous media: kinetic studies and synthetic applications.
    Spreti N; Germani R; Incani A; Savelli G
    Biotechnol Prog; 2004; 20(1):96-101. PubMed ID: 14763829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of interface-binding chloroperoxidase for interfacial biotransformation.
    Narayanan R; Zhu G; Wang P
    J Biotechnol; 2007 Jan; 128(1):86-92. PubMed ID: 17157403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction and separation of a lysine-rich protein by formation of supramolecule between crown ether and protein in aqueous two-phase system.
    Oshima T; Suetsugu A; Baba Y
    Anal Chim Acta; 2010 Aug; 674(2):211-9. PubMed ID: 20678632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the electron transfer interface between cytochrome b5 and cytochrome c.
    Ren Y; Wang WH; Wang YH; Case M; Qian W; McLendon G; Huang ZX
    Biochemistry; 2004 Mar; 43(12):3527-36. PubMed ID: 15035623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode.
    Zhou Y; Zhi J; Zou Y; Zhang W; Lee ST
    Anal Chem; 2008 Jun; 80(11):4141-6. PubMed ID: 18447324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochrome c superstructure biocomposite nucleated by gold nanoparticle: thermal stability and voltammetric behavior.
    Jiang X; Shang L; Wang Y; Dong S
    Biomacromolecules; 2005; 6(6):3030-6. PubMed ID: 16283723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and redox properties of mitochondrial cytochrome c co-sorbed with phosphate on hematite (alpha-Fe2O3) surfaces.
    Khare N; Eggleston CM; Lovelace DM; Boese SW
    J Colloid Interface Sci; 2006 Nov; 303(2):404-14. PubMed ID: 16945384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemistry of cytochrome C in aqueous and mixed solvent solutions: thermodynamics, kinetics, and the effect of solvent dielectric constant.
    O'Reilly NJ; Magner E
    Langmuir; 2005 Feb; 21(3):1009-14. PubMed ID: 15667182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical activation of cytochrome c proteins via crown ether complexation: cold-active synzymes for enantiomer-selective sulfoxide oxidation in methanol.
    Paul D; Suzumura A; Sugimoto H; Teraoka J; Shinoda S; Tsukube H
    J Am Chem Soc; 2003 Sep; 125(38):11478-9. PubMed ID: 13129333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced resonance Raman spectroscopy and spectroscopy study of redox-induced conformational equilibrium of cytochrome c adsorbed on DNA-modified metal electrode.
    Jiang X; Wang Y; Qu X; Dong S
    Biosens Bioelectron; 2006 Jul; 22(1):49-55. PubMed ID: 16414257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marked difference in cytochrome c oxidation mediated by HO(*) and/or O(2)(*-) free radicals in vitro.
    Thariat J; Collin F; Marchetti C; Ahmed-Adrar NS; Vitrac H; Jore D; Gardes-Albert M
    Biochimie; 2008 Oct; 90(10):1442-51. PubMed ID: 18555026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR spectroscopy reveals cytochrome c-poly(ethylene glycol) interactions.
    Crowley PB; Brett K; Muldoon J
    Chembiochem; 2008 Mar; 9(5):685-8. PubMed ID: 18260072
    [No Abstract]   [Full Text] [Related]  

  • 16. Direct electrochemistry behavior of cytochrome c/L-cysteine modified electrode and its electrocatalytic oxidation to nitric oxide.
    Liu YC; Cui SQ; Zhao J; Yang ZS
    Bioelectrochemistry; 2007 May; 70(2):416-20. PubMed ID: 16872916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical properties of cytochrome c nitrated by peroxynitrite.
    Jang B; Han S
    Biochimie; 2006 Jan; 88(1):53-8. PubMed ID: 16040185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein partitioning in aqueous two-phase systems composed of a pH-responsive copolymer and poly(ethylene glycol).
    Waziri SM; Abu-Sharkh BF; Ali SA
    Biotechnol Prog; 2004; 20(2):526-32. PubMed ID: 15058998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of mono-CDNP substitution of lysine residues on the redox reaction of cytochrome c electrostatically adsorbed on a mercaptoheptanoic acid modified Au(111) surface.
    Imabayashi S; Mita T; Kakiuchi T
    Langmuir; 2005 Mar; 21(6):2474-9. PubMed ID: 15752042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of the pro-apoptotic function of cytochrome c by singlet oxygen via a haem redox state-independent mechanism.
    Suto D; Sato K; Ohba Y; Yoshimura T; Fujii J
    Biochem J; 2005 Dec; 392(Pt 2):399-406. PubMed ID: 15966870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.