BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 14991835)

  • 1. Fc receptors and the common gamma-chain in experimental autoimmune encephalomyelitis.
    Szalai AJ; Barnum SR
    J Neurosci Res; 2004 Mar; 75(5):597-602. PubMed ID: 14991835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirement of the Fc receptor common gamma-chain for gamma delta T cell-mediated promotion of murine experimental autoimmune encephalomyelitis.
    Szalai AJ; Hu X; Raman C; Barnum SR
    Eur J Immunol; 2005 Dec; 35(12):3487-92. PubMed ID: 16278814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T(H)1 paradigm.
    Batoulis H; Addicks K; Kuerten S
    Ann Anat; 2010 Aug; 192(4):179-93. PubMed ID: 20692821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. gammadelta T cells express activation markers in the central nervous system of mice with chronic-relapsing experimental autoimmune encephalomyelitis.
    Gao YL; Rajan AJ; Raine CS; Brosnan CF
    J Autoimmun; 2001 Dec; 17(4):261-71. PubMed ID: 11771950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into cell responses involved in experimental autoimmune encephalomyelitis and multiple sclerosis.
    El Behi M; Dubucquoi S; Lefranc D; Zéphir H; De Seze J; Vermersch P; Prin L
    Immunol Lett; 2005 Jan; 96(1):11-26. PubMed ID: 15585303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Ifng gene is essential for Vdr gene expression and vitamin D₃-mediated reduction of the pathogenic T cell burden in the central nervous system in experimental autoimmune encephalomyelitis, a multiple sclerosis model.
    Spanier JA; Nashold FE; Olson JK; Hayes CE
    J Immunol; 2012 Sep; 189(6):3188-97. PubMed ID: 22896638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Multiple sclerosis and experimental autoimmune encephalomyelitis].
    Béraud-Juven E
    Rev Prat; 1994 Jan; 44(1):69-74. PubMed ID: 8178062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estrogen treatment induces a novel population of regulatory cells, which suppresses experimental autoimmune encephalomyelitis.
    Matejuk A; Bakke AC; Hopke C; Dwyer J; Vandenbark AA; Offner H
    J Neurosci Res; 2004 Jul; 77(1):119-26. PubMed ID: 15197745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunological basis for the development of tissue inflammation and organ-specific autoimmunity in animal models of multiple sclerosis.
    Korn T; Mitsdoerffer M; Kuchroo VK
    Results Probl Cell Differ; 2010; 51():43-74. PubMed ID: 19513635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What transgenic and knockout mouse models teach us about experimental autoimmune encephalomyelitis.
    Fazekas G; Tabira T
    Rev Immunogenet; 2000; 2(1):115-32. PubMed ID: 11324684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis.
    Miller SD; McMahon EJ; Schreiner B; Bailey SL
    Ann N Y Acad Sci; 2007 Apr; 1103():179-91. PubMed ID: 17376826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permanent effector phenotype of neuroantigen-specific T cells acquired in the central nervous system during experimental allergic encephalomyelitis.
    Hofstetter HH; Toyka KV; Gold R
    Neurosci Lett; 2006 Jan; 391(3):127-30. PubMed ID: 16198481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of CD8 suppressors versus destructors in autoimmune central nervous system inflammation.
    Zozulya AL; Wiendl H
    Hum Immunol; 2008 Nov; 69(11):797-804. PubMed ID: 18723060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fc receptors are critical for autoimmune inflammatory damage to the central nervous system in experimental autoimmune encephalomyelitis.
    Abdul-Majid KB; Stefferl A; Bourquin C; Lassmann H; Linington C; Olsson T; Kleinau S; Harris RA
    Scand J Immunol; 2002 Jan; 55(1):70-81. PubMed ID: 11841694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Activation of T cells in experimental autoimmune encephalomyelitis and multiple sclerosis].
    Rodríguez-Rodríguez Y; Suárez-Luis I
    Rev Neurol; 2003 Apr 1-15; 36(7):649-52. PubMed ID: 12666047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis.
    Noorbakhsh F; Tsutsui S; Vergnolle N; Boven LA; Shariat N; Vodjgani M; Warren KG; Andrade-Gordon P; Hollenberg MD; Power C
    J Exp Med; 2006 Feb; 203(2):425-35. PubMed ID: 16476770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting monocyte recruitment in CNS autoimmune disease.
    Izikson L; Klein RS; Luster AD; Weiner HL
    Clin Immunol; 2002 May; 103(2):125-31. PubMed ID: 12027417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the humoral immune system in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE).
    Ziemssen T; Ziemssen F
    Autoimmun Rev; 2005 Sep; 4(7):460-7. PubMed ID: 16137612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD62L is required for the priming of encephalitogenic T cells but does not play a major role in the effector phase of experimental autoimmune encephalomyelitis.
    Li O; Liu JQ; Zhang H; Zheng P; Liu Y; Bai XF
    Scand J Immunol; 2006 Aug; 64(2):117-24. PubMed ID: 16867156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into adaptive immunity in chronic neuroinflammation.
    Siffrin V; Brandt AU; Herz J; Zipp F
    Adv Immunol; 2007; 96():1-40. PubMed ID: 17981203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.