These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 14992468)

  • 61. A phased approach for assessing combined effects from multiple stressors.
    Menzie CA; MacDonell MM; Mumtaz M
    Environ Health Perspect; 2007 May; 115(5):807-16. PubMed ID: 17520072
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Medicating the environment: assessing risks of pharmaceuticals to wildlife and ecosystems.
    Arnold KE; Brown AR; Ankley GT; Sumpter JP
    Philos Trans R Soc Lond B Biol Sci; 2014 Nov; 369(1656):. PubMed ID: 25405959
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evaluation of approaches for terrestrial hazard classification.
    Renaud FG; Boxall AB; Toy R; Robertson S
    Chemosphere; 2004 Dec; 57(11):1697-706. PubMed ID: 15519416
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Season-Long Experimental Drought Alters Fungal Community Composition but Not Diversity in a Grassland Soil.
    Schmidt PA; Schmitt I; Otte J; Bandow C; Römbke J; Bálint M; Rolshausen G
    Microb Ecol; 2018 Feb; 75(2):468-478. PubMed ID: 28785816
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ecotoxicology and sustainable use of the planet.
    Cairns J
    Toxicol Ind Health; 2002 May; 18(4):162-70. PubMed ID: 12974539
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Atmosphere-terrestrial exchange of gaseous elemental mercury: parameterization improvement through direct comparison with measured ecosystem fluxes.
    Khan TR; Obrist D; Agnan Y; Selin NE; Perlinger JA
    Environ Sci Process Impacts; 2019 Oct; 21(10):1699-1712. PubMed ID: 31549133
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Combining species sensitivity distribution (SSD) model and thermodynamic index (exergy) for system-level ecological risk assessment of contaminates in aquatic ecosystems.
    He W; Kong X; Qin N; He Q; Liu W; Bai Z; Wang Y; Xu F
    Environ Int; 2019 Dec; 133(Pt B):105275. PubMed ID: 31675563
    [TBL] [Abstract][Full Text] [Related]  

  • 68. How to use mechanistic effect models in environmental risk assessment of pesticides: Case studies and recommendations from the SETAC workshop MODELINK.
    Hommen U; Forbes V; Grimm V; Preuss TG; Thorbek P; Ducrot V
    Integr Environ Assess Manag; 2016 Jan; 12(1):21-31. PubMed ID: 26437629
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Elaborations on the use of the ecosystem services concept for application in ecological risk assessment for soils.
    Faber JH; van Wensem J
    Sci Total Environ; 2012 Jan; 415():3-8. PubMed ID: 21723588
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Potential application of ecological models in the European environmental risk assessment of chemicals. I. Review of protection goals in EU directives and regulations.
    Hommen U; Baveco JM; Galic N; van den Brink PJ
    Integr Environ Assess Manag; 2010 Jul; 6(3):325-37. PubMed ID: 20821697
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An open-sourced statistical application for identifying complex toxicological interactions of environmental pollutants.
    Perkins JT; Petriello MC; Xu L; Stromberg A; Hennig B
    Rev Environ Health; 2017 Mar; 32(1-2):23-26. PubMed ID: 28118146
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An environmental fate, exposure and risk assessment of ethylene oxide from diffuse emissions.
    Staples CA; Gulledge W
    Chemosphere; 2006 Oct; 65(4):691-8. PubMed ID: 16516948
    [TBL] [Abstract][Full Text] [Related]  

  • 73. ERICA: A multiparametric toxicological risk index for the assessment of environmental healthiness.
    Boriani E; Mariani A; Baderna D; Moretti C; Lodi M; Benfenati E
    Environ Int; 2010 Oct; 36(7):665-74. PubMed ID: 20542570
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Immunotoxicity risks associated with land-treatment of petrochemical wastes revealed using an in situ rodent model.
    Rafferty DP; Lochmiller RL; McBee K; Qualls CW; Basta NT
    Environ Pollut; 2001; 112(1):73-87. PubMed ID: 11202656
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Identification of chemical hazards for terrestrial plants in the regulatory context: comparison of OECD and ISO guidelines.
    Tarazona JV; Cesnaitis R; Herranz-Montes FJ; Versonnen B
    Chemosphere; 2013 Nov; 93(10):2578-84. PubMed ID: 24206832
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology.
    Snape JR; Maund SJ; Pickford DB; Hutchinson TH
    Aquat Toxicol; 2004 Apr; 67(2):143-54. PubMed ID: 15003699
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ecological risk assessment of multimedia hazardous air pollutants: estimating exposure and effects.
    Efroymson RA; Murphy DL
    Sci Total Environ; 2001 Jul; 274(1-3):219-30. PubMed ID: 11453299
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biomarker responses in terrestrial gastropods exposed to pollutants: A comprehensive review.
    Radwan MA; El-Gendy KS; Gad AF
    Chemosphere; 2020 Oct; 257():127218. PubMed ID: 32497833
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Development of a terrestrial chemical spill management system.
    Bryant DL; Abkowitz MD
    J Hazard Mater; 2007 Aug; 147(1-2):78-90. PubMed ID: 17250961
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Next-generation ecological risk assessment: Predicting risk from molecular initiation to ecosystem service delivery.
    Forbes VE; Galic N
    Environ Int; 2016 May; 91():215-9. PubMed ID: 26985654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.