BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 14992596)

  • 1. Kinetic study of coniferyl alcohol radical binding to the (+)-pinoresinol forming dirigent protein.
    Halls SC; Davin LB; Kramer DM; Lewis NG
    Biochemistry; 2004 Mar; 43(9):2587-95. PubMed ID: 14992596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis.
    Gang DR; Costa MA; Fujita M; Dinkova-Kostova AT; Wang HB; Burlat V; Martin W; Sarkanen S; Davin LB; Lewis NG
    Chem Biol; 1999 Mar; 6(3):143-51. PubMed ID: 10074466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center.
    Davin LB; Wang HB; Crowell AL; Bedgar DL; Martin DM; Sarkanen S; Lewis NG
    Science; 1997 Jan; 275(5298):362-6. PubMed ID: 8994027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trimeric structure of (+)-pinoresinol-forming dirigent protein at 1.95 Å resolution with three isolated active sites.
    Kim KW; Smith CA; Daily MD; Cort JR; Davin LB; Lewis NG
    J Biol Chem; 2015 Jan; 290(3):1308-18. PubMed ID: 25411250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactivity of 4-vinylphenol radical cations in solution: implications for the biosynthesis of lignans.
    Rodríguez-Evora Y; Schepp NP
    Org Biomol Chem; 2005 Dec; 3(24):4444-9. PubMed ID: 16327905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of new 5-linked pinoresinol lignin models.
    Yue F; Lu F; Sun R; Ralph J
    Chemistry; 2012 Dec; 18(51):16402-10. PubMed ID: 23109283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coniferyl Alcohol Radical Detection by the Dirigent Protein AtDIR6 Monitored by EPR.
    Modolo C; Ren L; Besson E; Robert V; Gastaldi S; Rousselot-Pailley P; Tron T
    Chembiochem; 2021 Mar; 22(6):992-995. PubMed ID: 33112043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols.
    Pickel B; Constantin MA; Pfannstiel J; Conrad J; Beifuss U; Schaller A
    Angew Chem Int Ed Engl; 2010; 49(1):202-4. PubMed ID: 19946920
    [No Abstract]   [Full Text] [Related]  

  • 9. Pinoresinol-lariciresinol reductase: Substrate versatility, enantiospecificity, and kinetic properties.
    Hwang JK; Moinuddin SGA; Davin LB; Lewis NG
    Chirality; 2020 Jun; 32(6):770-789. PubMed ID: 32201979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dirigent phenoxy radical coupling: advances and challenges.
    Davin LB; Lewis NG
    Curr Opin Biotechnol; 2005 Aug; 16(4):398-406. PubMed ID: 16023845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol.
    Davin LB; Bedgar DL; Katayama T; Lewis NG
    Phytochemistry; 1992 Nov; 31(11):3869-74. PubMed ID: 11536515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary and quaternary structures of the (+)-pinoresinol-forming dirigent protein.
    Halls SC; Lewis NG
    Biochemistry; 2002 Jul; 41(30):9455-61. PubMed ID: 12135368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-steps in one-pot: whole-cell biocatalytic synthesis of enantiopure (+)- and (-)-pinoresinol via kinetic resolution.
    Ricklefs E; Girhard M; Urlacher VB
    Microb Cell Fact; 2016 May; 15():78. PubMed ID: 27160378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized expression of the dirigent protein AtDIR6 in Pichia pastoris and impact of glycosylation on protein structure and function.
    Kazenwadel C; Klebensberger J; Richter S; Pfannstiel J; Gerken U; Pickel B; Schaller A; Hauer B
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7215-27. PubMed ID: 23188459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of dirigent proteins derived from structural and functional similarities with allene oxide cyclase and lipocalins.
    Pickel B; Pfannstiel J; Steudle A; Lehmann A; Gerken U; Pleiss J; Schaller A
    FEBS J; 2012 Jun; 279(11):1980-93. PubMed ID: 22443713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dirigent Proteins Guide Asymmetric Heterocoupling for the Synthesis of Complex Natural Product Analogues.
    Kim SS; Sattely ES
    J Am Chem Soc; 2021 Apr; 143(13):5011-5021. PubMed ID: 33780244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations.
    Baciocchi E; Fabbri C; Lanzalunga O
    J Org Chem; 2003 Nov; 68(23):9061-9. PubMed ID: 14604381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opposite stereoselectivities of dirigent proteins in Arabidopsis and schizandra species.
    Kim KW; Moinuddin SG; Atwell KM; Costa MA; Davin LB; Lewis NG
    J Biol Chem; 2012 Oct; 287(41):33957-72. PubMed ID: 22854967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.