These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 14992596)
1. Kinetic study of coniferyl alcohol radical binding to the (+)-pinoresinol forming dirigent protein. Halls SC; Davin LB; Kramer DM; Lewis NG Biochemistry; 2004 Mar; 43(9):2587-95. PubMed ID: 14992596 [TBL] [Abstract][Full Text] [Related]
2. Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Gang DR; Costa MA; Fujita M; Dinkova-Kostova AT; Wang HB; Burlat V; Martin W; Sarkanen S; Davin LB; Lewis NG Chem Biol; 1999 Mar; 6(3):143-51. PubMed ID: 10074466 [TBL] [Abstract][Full Text] [Related]
3. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Davin LB; Wang HB; Crowell AL; Bedgar DL; Martin DM; Sarkanen S; Lewis NG Science; 1997 Jan; 275(5298):362-6. PubMed ID: 8994027 [TBL] [Abstract][Full Text] [Related]
4. Trimeric structure of (+)-pinoresinol-forming dirigent protein at 1.95 Å resolution with three isolated active sites. Kim KW; Smith CA; Daily MD; Cort JR; Davin LB; Lewis NG J Biol Chem; 2015 Jan; 290(3):1308-18. PubMed ID: 25411250 [TBL] [Abstract][Full Text] [Related]
5. Reactivity of 4-vinylphenol radical cations in solution: implications for the biosynthesis of lignans. Rodríguez-Evora Y; Schepp NP Org Biomol Chem; 2005 Dec; 3(24):4444-9. PubMed ID: 16327905 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of new 5-linked pinoresinol lignin models. Yue F; Lu F; Sun R; Ralph J Chemistry; 2012 Dec; 18(51):16402-10. PubMed ID: 23109283 [TBL] [Abstract][Full Text] [Related]
7. Coniferyl Alcohol Radical Detection by the Dirigent Protein AtDIR6 Monitored by EPR. Modolo C; Ren L; Besson E; Robert V; Gastaldi S; Rousselot-Pailley P; Tron T Chembiochem; 2021 Mar; 22(6):992-995. PubMed ID: 33112043 [TBL] [Abstract][Full Text] [Related]
8. An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. Pickel B; Constantin MA; Pfannstiel J; Conrad J; Beifuss U; Schaller A Angew Chem Int Ed Engl; 2010; 49(1):202-4. PubMed ID: 19946920 [No Abstract] [Full Text] [Related]
9. Pinoresinol-lariciresinol reductase: Substrate versatility, enantiospecificity, and kinetic properties. Hwang JK; Moinuddin SGA; Davin LB; Lewis NG Chirality; 2020 Jun; 32(6):770-789. PubMed ID: 32201979 [TBL] [Abstract][Full Text] [Related]
10. Dirigent phenoxy radical coupling: advances and challenges. Davin LB; Lewis NG Curr Opin Biotechnol; 2005 Aug; 16(4):398-406. PubMed ID: 16023845 [TBL] [Abstract][Full Text] [Related]
11. On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol. Davin LB; Bedgar DL; Katayama T; Lewis NG Phytochemistry; 1992 Nov; 31(11):3869-74. PubMed ID: 11536515 [TBL] [Abstract][Full Text] [Related]
12. Secondary and quaternary structures of the (+)-pinoresinol-forming dirigent protein. Halls SC; Lewis NG Biochemistry; 2002 Jul; 41(30):9455-61. PubMed ID: 12135368 [TBL] [Abstract][Full Text] [Related]
13. Three-steps in one-pot: whole-cell biocatalytic synthesis of enantiopure (+)- and (-)-pinoresinol via kinetic resolution. Ricklefs E; Girhard M; Urlacher VB Microb Cell Fact; 2016 May; 15():78. PubMed ID: 27160378 [TBL] [Abstract][Full Text] [Related]
14. Optimized expression of the dirigent protein AtDIR6 in Pichia pastoris and impact of glycosylation on protein structure and function. Kazenwadel C; Klebensberger J; Richter S; Pfannstiel J; Gerken U; Pickel B; Schaller A; Hauer B Appl Microbiol Biotechnol; 2013 Aug; 97(16):7215-27. PubMed ID: 23188459 [TBL] [Abstract][Full Text] [Related]
15. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects. Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960 [TBL] [Abstract][Full Text] [Related]
16. A model of dirigent proteins derived from structural and functional similarities with allene oxide cyclase and lipocalins. Pickel B; Pfannstiel J; Steudle A; Lehmann A; Gerken U; Pleiss J; Schaller A FEBS J; 2012 Jun; 279(11):1980-93. PubMed ID: 22443713 [TBL] [Abstract][Full Text] [Related]
17. Dirigent Proteins Guide Asymmetric Heterocoupling for the Synthesis of Complex Natural Product Analogues. Kim SS; Sattely ES J Am Chem Soc; 2021 Apr; 143(13):5011-5021. PubMed ID: 33780244 [TBL] [Abstract][Full Text] [Related]
18. Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations. Baciocchi E; Fabbri C; Lanzalunga O J Org Chem; 2003 Nov; 68(23):9061-9. PubMed ID: 14604381 [TBL] [Abstract][Full Text] [Related]
19. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair. Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755 [TBL] [Abstract][Full Text] [Related]
20. Opposite stereoselectivities of dirigent proteins in Arabidopsis and schizandra species. Kim KW; Moinuddin SG; Atwell KM; Costa MA; Davin LB; Lewis NG J Biol Chem; 2012 Oct; 287(41):33957-72. PubMed ID: 22854967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]