These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 1499260)

  • 1. Assessment of oxygen transfer in membrane oxygenators during clinical cardiopulmonary bypass.
    Clayton RH; Pearson DT; Murray A
    Clin Phys Physiol Meas; 1992 May; 13(2):167-77. PubMed ID: 1499260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure drop, shear stress, and activation of leukocytes during cardiopulmonary bypass: a comparison between hollow fiber and flat sheet membrane oxygenators.
    Gu YJ; Boonstra PW; Graaff R; Rijnsburger AA; Mungroop H; van Oeveren W
    Artif Organs; 2000 Jan; 24(1):43-8. PubMed ID: 10677156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contemporary Oxygenator Design: Shear Stress-Related Oxygen and Carbon Dioxide Transfer.
    Hendrix RHJ; Ganushchak YM; Weerwind PW
    Artif Organs; 2018 Jun; 42(6):611-619. PubMed ID: 29473675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method to measure oxygenator oxygen transfer performance during cardiopulmonary bypass: clinical testing using the Medtronic Fusion oxygenator.
    Hamilton C; Marin D; Weinbrenner F; Engelhardt B; Rosenzweig D; Beck U; Borisov P; Hohe S
    Perfusion; 2017 Mar; 32(2):133-140. PubMed ID: 27600701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative gas transfer of an intravascular oxygenator.
    Tönz M; von Segesser LK; Leskosek B; Turina MI
    Ann Thorac Surg; 1994 Jan; 57(1):146-50. PubMed ID: 8279881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfluorocarbon oxygen transport. A comparative study of four oxygenator designs.
    Ferguson ER; Clymer JJ; Spruell RD; Holman WL
    ASAIO J; 1994; 40(3):M649-53. PubMed ID: 8555594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of oxygenator mechanical characteristics on energy transfer during clinical cardiopulmonary bypass.
    Ganushchak YM; Reesink KD; Weerwind PW; Maessen JG
    Perfusion; 2011 Jan; 26(1):39-44. PubMed ID: 20921084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From the spinning disc to the membrane oxygenator for open-heart surgery.
    Björk VO; Sternlieb JJ; Davenport C
    Scand J Thorac Cardiovasc Surg; 1985; 19(3):207-16. PubMed ID: 3936170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of three commercially available hollow fiber oxygenators: gas transfer performance and biocompatibility.
    de Vroege R; Wagemakers M; te Velthuis H; Bulder E; Paulus R; Huybregts R; Wildevuur W; Eijsman L; van Oeveren W; Wildevuur C
    ASAIO J; 2001; 47(1):37-44. PubMed ID: 11199313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the oxygenator: past, present, and future.
    Iwahashi H; Yuri K; Nosé Y
    J Artif Organs; 2004; 7(3):111-20. PubMed ID: 15558331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood compatibility of two different types of membrane oxygenator during cardiopulmonary bypass in infants.
    Gu YJ; Boonstra PW; Akkerman C; Mungroop H; Tigchelaar I; Van Oeveren W
    Int J Artif Organs; 1994 Oct; 17(10):543-8. PubMed ID: 7896428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a preprimed microporous hollow-fiber membrane for rapid response neonatal extracorporeal membrane oxygenation.
    Walczak R; Lawson DS; Kaemmer D; McRobb C; McDermott P; Smigla G; Shearer I; Lodge A; Jaggers J
    Perfusion; 2005 Sep; 20(5):269-75. PubMed ID: 16231623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evaluation of the Dideco D903 Avant 1.7 hollow-fibre membrane oxygenator.
    Mueller XM; Tevaearai HT; Augstburger M; Horisberger J; von Segesser LK
    Perfusion; 1998 Sep; 13(5):353-9. PubMed ID: 9778721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of hollow-fiber membrane surface area on oxygenator performance: Dideco D903 Avant versus a prototype with larger surface area.
    Mueller XM; Tevaearai HT; Jegger D; Boone Y; Augstburger M; von Segesser LK
    J Extra Corpor Technol; 2000 Sep; 32(3):152-7. PubMed ID: 11146960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new hollow-fiber oxygenator for clinical cardiopulmonary bypass.
    Golding LA; Loop FD; Meserko J; Sinkewich M; Nosé Y
    Artif Organs; 1984 Nov; 8(4):498-500. PubMed ID: 6508605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood--artificial surface interactions during cardiopulmonary bypass. A comparative study of four oxygenators.
    Benedetti M; De Caterina R; Bionda A; Gardinali M; Cicardi M; Maffei S; Gazzetti P; Pistolesi P; Vernazza F; Michelassi C
    Int J Artif Organs; 1990 Aug; 13(8):488-97. PubMed ID: 2146229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initial clinical experience with a low pressure drop membrane oxygenator for cardiopulmonary bypass in adult patients.
    Karlson KE; Massimino RM; Cooper GN; Singh AK
    Am J Surg; 1984 Apr; 147(4):447-50. PubMed ID: 6424487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Goal-Directed Perfusion Methodology for Determining Oxygenator Performance during Clinical Cardiopulmonary Bypass.
    Stammers AH; Miller R; Francis SG; Fuzesi L; Nostro A; Tesdahl E
    J Extra Corpor Technol; 2017 Jun; 49(2):81-92. PubMed ID: 28638156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of preprimed oxygenators on gas transfer efficiency.
    Gao C; Stammers AH; Ahlgren RL; Ellis TA; Holcomb HB; Nutter BT; Schmer RG; Hock L
    J Extra Corpor Technol; 2003 Jun; 35(2):121-6. PubMed ID: 12939020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator.
    Burn F; Ciocan S; Carmona NM; Berner M; Sourdon J; Carrel TP; Tevaearai Stahel HT; Longnus SL
    Interact Cardiovasc Thorac Surg; 2015 Sep; 21(3):352-8. PubMed ID: 26037378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.