These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 14993668)

  • 1. Structure determination of a truncated dimeric splicing endonuclease in pseudo-face-centered space group P2(1)2(1)2.
    Zhang Y; Li H
    Acta Crystallogr D Biol Crystallogr; 2004 Mar; 60(Pt 3):447-52. PubMed ID: 14993668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a dimeric archaeal splicing endonuclease.
    Li H; Abelson J
    J Mol Biol; 2000 Sep; 302(3):639-48. PubMed ID: 10986124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved lysine residue in the crenarchaea-specific loop is important for the crenarchaeal splicing endonuclease activity.
    Okuda M; Shiba T; Inaoka DK; Kita K; Kurisu G; Mineki S; Harada S; Watanabe Y; Yoshinari S
    J Mol Biol; 2011 Jan; 405(1):92-104. PubMed ID: 21050862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA recognition and cleavage by a splicing endonuclease.
    Xue S; Calvin K; Li H
    Science; 2006 May; 312(5775):906-10. PubMed ID: 16690865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tertiary structure of full-length bovine adrenodoxin suggests functional dimers.
    Pikuleva IA; Tesh K; Waterman MR; Kim Y
    Arch Biochem Biophys; 2000 Jan; 373(1):44-55. PubMed ID: 10620322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaching for mechanistic consensus across life kingdoms: structure and insights into catalysis of the myo-inositol-1-phosphate synthase (mIPS) from Archaeoglobus fulgidus.
    Stieglitz KA; Yang H; Roberts MF; Stec B
    Biochemistry; 2005 Jan; 44(1):213-24. PubMed ID: 15628862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of calf spleen purine nucleoside phosphorylase with two full trimers in the asymmetric unit: important implications for the mechanism of catalysis.
    Bzowska A; Koellner G; Wielgus-Kutrowska B; Stroh A; Raszewski G; Holý A; Steiner T; Frank J
    J Mol Biol; 2004 Sep; 342(3):1015-32. PubMed ID: 15342253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dawn of dominance by the mature domain in tRNA splicing.
    Tocchini-Valentini GD; Fruscoloni P; Tocchini-Valentini GP
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12300-5. PubMed ID: 17636125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of a substrate for the archaeal pre-tRNA splicing endonucleases: the bulge-helix-bulge motif.
    Diener JL; Moore PB
    Mol Cell; 1998 May; 1(6):883-94. PubMed ID: 9660971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the biotin carboxylase domain of pyruvate carboxylase from Bacillus thermodenitrificans.
    Kondo S; Nakajima Y; Sugio S; Sueda S; Islam MN; Kondo H
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):885-90. PubMed ID: 17642515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of A. fulgidus Rio2 defines a new family of serine protein kinases.
    LaRonde-LeBlanc N; Wlodawer A
    Structure; 2004 Sep; 12(9):1585-94. PubMed ID: 15341724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a glycyl radical enzyme from Archaeoglobus fulgidus.
    Lehtiö L; Grossmann JG; Kokona B; Fairman R; Goldman A
    J Mol Biol; 2006 Mar; 357(1):221-35. PubMed ID: 16414072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of archaeal highly thermostable L-aspartate dehydrogenase/NAD/citrate ternary complex.
    Yoneda K; Sakuraba H; Tsuge H; Katunuma N; Ohshima T
    FEBS J; 2007 Aug; 274(16):4315-25. PubMed ID: 17651440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of alanine dehydrogenase from Archaeoglobus: active site analysis and relation to bacterial cyclodeaminases and mammalian mu crystallin.
    Gallagher DT; Monbouquette HG; Schröder I; Robinson H; Holden MJ; Smith NN
    J Mol Biol; 2004 Sep; 342(1):119-30. PubMed ID: 15313611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the peptidoglycan recognition protein at 1.8 A resolution reveals dual strategy to combat infection through two independent functional homodimers.
    Sharma P; Singh N; Sinha M; Sharma S; Perbandt M; Betzel C; Kaur P; Srinivasan A; Singh TP
    J Mol Biol; 2008 May; 378(4):923-32. PubMed ID: 18395744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autophosphorylation of Archaeoglobus fulgidus Rio2 and crystal structures of its nucleotide-metal ion complexes.
    LaRonde-LeBlanc N; Guszczynski T; Copeland T; Wlodawer A
    FEBS J; 2005 Jun; 272(11):2800-10. PubMed ID: 15943813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of the abasic site specificity pocket of an AP endonuclease from Archaeoglobus fulgidus.
    Schmiedel R; Kuettner EB; Keim A; Sträter N; Greiner-Stöffele T
    DNA Repair (Amst); 2009 Feb; 8(2):219-31. PubMed ID: 19015049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA.
    Moore T; Zhang Y; Fenley MO; Li H
    Structure; 2004 May; 12(5):807-18. PubMed ID: 15130473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus.
    Schiffer A; Parey K; Warkentin E; Diederichs K; Huber H; Stetter KO; Kroneck PM; Ermler U
    J Mol Biol; 2008 Jun; 379(5):1063-74. PubMed ID: 18495156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural framework for the mechanism of archaeal exosomes in RNA processing.
    Büttner K; Wenig K; Hopfner KP
    Mol Cell; 2005 Nov; 20(3):461-71. PubMed ID: 16285927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.