BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 14993895)

  • 1. Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury.
    Hesse S; Werner C; Bardeleben A
    Spinal Cord; 2004 Jun; 42(6):346-52. PubMed ID: 14993895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged electrical stimulation over hip flexors increases locomotor output in human SCI.
    Wu M; Gordon K; Kahn JH; Schmit BD
    Clin Neurophysiol; 2011 Jul; 122(7):1421-8. PubMed ID: 21555239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of spinal reflex by assisted locomotion in humans with chronic complete spinal cord injury.
    Bolliger M; Trepp A; Zörner B; Dietz V
    Clin Neurophysiol; 2010 Dec; 121(12):2152-8. PubMed ID: 20554473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures.
    Dietz V; Müller R
    Brain; 2004 Oct; 127(Pt 10):2221-31. PubMed ID: 15269117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation parameter optimization for functional electrical stimulation assisted gait in human spinal cord injury using response surface methodology.
    Kim Y; Schmit BD; Youm Y
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):485-94. PubMed ID: 16488061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical analysis of functional electrical stimulation on trunk musculature during wheelchair propulsion.
    Yang YS; Koontz AM; Triolo RJ; Cooper RA; Boninger ML
    Neurorehabil Neural Repair; 2009 Sep; 23(7):717-25. PubMed ID: 19261768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury.
    Thomas SL; Gorassini MA
    J Neurophysiol; 2005 Oct; 94(4):2844-55. PubMed ID: 16000519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decrease of hypertonia after continuous passive motion treatment in individuals with spinal cord injury.
    Chang YJ; Fang CY; Hsu MJ; Lien HY; Wong MK
    Clin Rehabil; 2007 Aug; 21(8):712-8. PubMed ID: 17846071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H reflex modulation by transcranial magnetic stimulation in spinal cord injury subjects after gait training with electromechanical systems.
    Benito Penalva J; Opisso E; Medina J; Corrons M; Kumru H; Vidal J; Valls-Solé J
    Spinal Cord; 2010 May; 48(5):400-6. PubMed ID: 19935755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait training regimen for incomplete spinal cord injury using functional electrical stimulation.
    Thrasher TA; Flett HM; Popovic MR
    Spinal Cord; 2006 Jun; 44(6):357-61. PubMed ID: 16249784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury--observed benefits during gait studies.
    Granat MH; Ferguson AC; Andrews BJ; Delargy M
    Paraplegia; 1993 Apr; 31(4):207-15. PubMed ID: 8493035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials.
    Minassian K; Jilge B; Rattay F; Pinter MM; Binder H; Gerstenbrand F; Dimitrijevic MR
    Spinal Cord; 2004 Jul; 42(7):401-16. PubMed ID: 15124000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury.
    Field-Fote EC
    Phys Ther; 2000 May; 80(5):477-84. PubMed ID: 10792858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of locomotor patterns in decerebrate cats in conditions of epidural stimulation of the spinal cord.
    Gerasimenko YP; Lavrov IA; Bogacheva IN; Shcherbakova NA; Kucher VI; Musienko PE
    Neurosci Behav Physiol; 2005 Mar; 35(3):291-8. PubMed ID: 15875491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons.
    Barthélemy D; Willerslev-Olsen M; Lundell H; Conway BA; Knudsen H; Biering-Sørensen F; Nielsen JB
    J Neurophysiol; 2010 Aug; 104(2):1167-76. PubMed ID: 20554839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in spastic muscle tone increase in patients with spinal cord injury using functional electrical stimulation and passive leg movements.
    Krause P; Szecsi J; Straube A
    Clin Rehabil; 2008 Jul; 22(7):627-34. PubMed ID: 18586814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical systems for improving locomotion after incomplete spinal cord injury: an assessment.
    Stein RB; Bélanger M; Wheeler G; Wieler M; Popović DB; Prochazka A; Davis LA
    Arch Phys Med Rehabil; 1993 Sep; 74(9):954-9. PubMed ID: 8379842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation effects of epidural spinal cord stimulation on muscle activities during walking.
    Huang H; He J; Herman R; Carhart MR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):14-23. PubMed ID: 16562627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of quadriceps and anterior tibial muscles electrical stimulation on the feet and ankles of patients with spinal cord injuries.
    Bittar CK; Cliquet A
    Spinal Cord; 2010 Dec; 48(12):881-5. PubMed ID: 20479766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
    Norton JA; Gorassini MA
    J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.