BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 14994271)

  • 1. Elk-1 knock-out mice engineered by Flp recombinase-mediated cassette exchange.
    Cesari F; Rennekampff V; Vintersten K; Vuong LG; Seibler J; Bode J; Wiebel FF; Nordheim A
    Genesis; 2004 Feb; 38(2):87-92. PubMed ID: 14994271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA cassette exchange in ES cells mediated by Flp recombinase: an efficient strategy for repeated modification of tagged loci by marker-free constructs.
    Seibler J; Schübeler D; Fiering S; Groudine M; Bode J
    Biochemistry; 1998 May; 37(18):6229-34. PubMed ID: 9572836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of a series of knock-in alleles using RMCE in ES cells.
    Roebroek AJ; Gordts PL; Reekmans S
    Methods Mol Biol; 2011; 693():277-81. PubMed ID: 21080286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexing RMCE: versatile extensions of the Flp-recombinase-mediated cassette-exchange technology.
    Turan S; Kuehle J; Schambach A; Baum C; Bode J
    J Mol Biol; 2010 Sep; 402(1):52-69. PubMed ID: 20650281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delta elk-1, a variant of elk-1, fails to interact with the serum response factor and binds to DNA with modulated specificity.
    Rao VN; Reddy ES
    Cancer Res; 1993 Jan; 53(2):215-20. PubMed ID: 8417810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Egr-1 is activated by 17beta-estradiol in MCF-7 cells by mitogen-activated protein kinase-dependent phosphorylation of ELK-1.
    Chen CC; Lee WR; Safe S
    J Cell Biochem; 2004 Nov; 93(5):1063-74. PubMed ID: 15449318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression.
    Wang Z; Wang DZ; Hockemeyer D; McAnally J; Nordheim A; Olson EN
    Nature; 2004 Mar; 428(6979):185-9. PubMed ID: 15014501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CSF-1 induces fos gene transcription and activates the transcription factor Elk-1 in mature osteoclasts.
    Yao GQ; Itokawa T; Paliwal I; Insogna K
    Calcif Tissue Int; 2005 May; 76(5):371-8. PubMed ID: 15812575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Flp-recombinase to characterize expansion of Wnt1-expressing neural progenitors in the mouse.
    Dymecki SM; Tomasiewicz H
    Dev Biol; 1998 Sep; 201(1):57-65. PubMed ID: 9733573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges.
    Turan S; Galla M; Ernst E; Qiao J; Voelkel C; Schiedlmeier B; Zehe C; Bode J
    J Mol Biol; 2011 Mar; 407(2):193-221. PubMed ID: 21241707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-reciprocal crossover mediated by FLP-recombinase: a concept and an assay.
    Seibler J; Bode J
    Biochemistry; 1997 Feb; 36(7):1740-7. PubMed ID: 9048557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient DNA cassette exchange in mouse embryonic stem cells by staggered positive-negative selection.
    Long Q; Shelton KD; Lindner J; Jones JR; Magnuson MA
    Genesis; 2004 Aug; 39(4):256-62. PubMed ID: 15286998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The study of a HPRT locus-specific transgenic method based on FLP recombinase mediated cassette exchange].
    Zheng JM; He Y; Fu JL
    Shi Yan Sheng Wu Xue Bao; 2001 Dec; 34(4):279-82. PubMed ID: 12549206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinase-mediated cassette exchange to rapidly and efficiently generate mice with human cardiac sodium channels.
    Liu K; Hipkens S; Yang T; Abraham R; Zhang W; Chopra N; Knollmann B; Magnuson MA; Roden DM
    Genesis; 2006 Nov; 44(11):556-64. PubMed ID: 17083109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering cell-permeant FLP recombinase for tightly controlled inducible and reversible overexpression in embryonic stem cells.
    Patsch C; Peitz M; Otte DM; Kesseler D; Jungverdorben J; Wunderlich FT; Brüstle O; Zimmer A; Edenhofer F
    Stem Cells; 2010 May; 28(5):894-902. PubMed ID: 20333748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locations of the ets subfamily members net, elk1, and sap1 (ELK3, ELK1, and ELK4) on three homologous regions of the mouse and human genomes.
    Giovane A; Sobieszczuk P; Mignon C; Mattei MG; Wasylyk B
    Genomics; 1995 Oct; 29(3):769-72. PubMed ID: 8575773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of efficiency between FLPe and Cre for recombinase-mediated cassette exchange in vitro and in adenovirus vector production.
    Takata Y; Kondo S; Goda N; Kanegae Y; Saito I
    Genes Cells; 2011 Jul; 16(7):765-77. PubMed ID: 21707874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic analysis of RSK2 and Elk-1 interaction on the serum response element and implications for cellular engineering.
    Aksan Kurnaz I
    Biotechnol Bioeng; 2004 Dec; 88(7):890-900. PubMed ID: 15515167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mice deficient for the ets transcription factor elk-1 show normal immune responses and mildly impaired neuronal gene activation.
    Cesari F; Brecht S; Vintersten K; Vuong LG; Hofmann M; Klingel K; Schnorr JJ; Arsenian S; Schild H; Herdegen T; Wiebel FF; Nordheim A
    Mol Cell Biol; 2004 Jan; 24(1):294-305. PubMed ID: 14673163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of serum response factor (SRF) with the Elk-1 B box inhibits RhoA-actin signaling to SRF and potentiates transcriptional activation by Elk-1.
    Murai K; Treisman R
    Mol Cell Biol; 2002 Oct; 22(20):7083-92. PubMed ID: 12242287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.