These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 14994427)

  • 1. Impact of light intensity on flowering time and plant quality of Antirrhinum majus L. cultivar Chimes White.
    Munir M; Jamil M; Baloch JU; Khattak KR
    J Zhejiang Univ Sci; 2004 Apr; 5(4):400-5. PubMed ID: 14994427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light quality and temperature effects on antirrhinum growth and development.
    Khattak AM; Pearson S
    J Zhejiang Univ Sci B; 2005 Feb; 6(2):119-24. PubMed ID: 15633247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using flowering times and leaf numbers to model the phases of photoperiod sensitivity in Antirrhinum majus L.
    Adams SR; Munir M; Valdés VM; Langton FA; Jackson SD
    Ann Bot; 2003 Nov; 92(5):689-96. PubMed ID: 14500328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes.
    Preston JC; Hileman LC
    Plant J; 2010 May; 62(4):704-12. PubMed ID: 20202170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: White versus blue plus red radiation.
    Park Y; Runkle ES
    PLoS One; 2018; 13(8):e0202386. PubMed ID: 30114282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bilateral flower symmetry--how, when and why?
    Hileman LC
    Curr Opin Plant Biol; 2014 Feb; 17():146-52. PubMed ID: 24507506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for cytoplasmic inheritance of a developmental organizer affecting growth habit and leaf shape in Antirrhinum majus.
    Bergbusch VL
    Heredity (Edinb); 2002 Jul; 89(1):44-55. PubMed ID: 12080369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome structure and evolution of Antirrhinum majus L.
    Li M; Zhang D; Gao Q; Luo Y; Zhang H; Ma B; Chen C; Whibley A; Zhang Y; Cao Y; Li Q; Guo H; Li J; Song Y; Zhang Y; Copsey L; Li Y; Li X; Qi M; Wang J; Chen Y; Wang D; Zhao J; Liu G; Wu B; Yu L; Xu C; Li J; Zhao S; Zhang Y; Hu S; Liang C; Yin Y; Coen E; Xue Y
    Nat Plants; 2019 Feb; 5(2):174-183. PubMed ID: 30692677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An auxin-responsive 1-aminocyclopropane-1-carboxylate synthase is responsible for differential ethylene production in gravistimulated Antirrhinum majus L. flower stems.
    Woltering EJ; Balk PA; Nijenhuis-Devries MA; Faivre M; Ruys G; Somhorst D; Philosoph-Hadas S; Friedman H
    Planta; 2005 Jan; 220(3):403-13. PubMed ID: 15349780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The distribution of two major Iridoids in different organs of Antirrhinum majus L. at selected stages of development.
    Beninger CW; Cloutier RR; Monteiro MA; Grodzinski B
    J Chem Ecol; 2007 Apr; 33(4):731-47. PubMed ID: 17334922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of flowering by green light depends on its photon flux density and involves cryptochromes.
    Meng Q; Runkle ES
    Physiol Plant; 2019 Jul; 166(3):762-771. PubMed ID: 30187495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shade Delayed Flowering Phenology and Decreased Reproductive Growth of
    Qin F; Shen Y; Li Z; Qu H; Feng J; Kong L; Teri G; Luan H; Cao Z
    Front Plant Sci; 2022; 13():835380. PubMed ID: 35720597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic Response to Light Versus Shade Associated with DNA Methylation Changes in Snapdragon Plants (
    Mouginot P; Luviano Aparicio N; Gourcilleau D; Latutrie M; Marin S; Hemptinne JL; Grunau C; Pujol B
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33557416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flower symmetry and shape in Antirrhinum.
    Almeida J; Galego L
    Int J Dev Biol; 2005; 49(5-6):527-37. PubMed ID: 16096962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Obligatory short-day plant, Perilla frutescens var. crispa can flower in response to low-intensity light stress under long-day conditions.
    Wada KC; Kondo H; Takeno K
    Physiol Plant; 2010 Mar; 138(3):339-45. PubMed ID: 20059732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vegetative traits can predict flowering quality in Phalaenopsis orchids despite large genotypic variation in response to light and temperature.
    van Tongerlo E; van Ieperen W; Dieleman JA; Marcelis LFM
    PLoS One; 2021; 16(5):e0251405. PubMed ID: 33974639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of flowering time by light quality.
    Cerdán PD; Chory J
    Nature; 2003 Jun; 423(6942):881-5. PubMed ID: 12815435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ROSINA (RSI), a novel protein with DNA-binding capacity, acts during floral organ development in Antirrhinum majus.
    Roccaro M; Li Y; Masiero S; Saedler H; Sommer H
    Plant J; 2005 Jul; 43(2):238-50. PubMed ID: 15998310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational method for inferring growth parameters and shape changes during development based on clonal analysis.
    Rolland-Lagan AG; Coen E; Impey SJ; Bangham JA
    J Theor Biol; 2005 Jan; 232(2):157-77. PubMed ID: 15530487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Arabidopsis Myb genes MYR1 and MYR2 are redundant negative regulators of flowering time under decreased light intensity.
    Zhao C; Hanada A; Yamaguchi S; Kamiya Y; Beers EP
    Plant J; 2011 May; 66(3):502-15. PubMed ID: 21255164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.