These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 14994793)
1. Preparation of spray-dried wettable powder formulations of Bacillus thuringiensis-based biopesticides. Teera-Arunsiri A; Suphantharika M; Ketunuti U J Econ Entomol; 2003 Apr; 96(2):292-9. PubMed ID: 14994793 [TBL] [Abstract][Full Text] [Related]
2. Optimization of spray-drying conditions for the large-scale preparation of Bacillus thuringiensis var. israelensis after downstream processing. Prabakaran G; Hoti SL Biotechnol Bioeng; 2008 May; 100(1):103-7. PubMed ID: 18023058 [TBL] [Abstract][Full Text] [Related]
3. A new biopesticide from a local Bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). Eski A; Demir İ; Sezen K; Demirbağ Z World J Microbiol Biotechnol; 2017 May; 33(5):95. PubMed ID: 28405911 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis. Nian XG; He YR; Lu LH; Zhao R Pest Manag Sci; 2015 Dec; 71(12):1675-84. PubMed ID: 25641869 [TBL] [Abstract][Full Text] [Related]
5. Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Thamthiankul S; Moar WJ; Miller ME; Panbangred W Appl Microbiol Biotechnol; 2004 Aug; 65(2):183-92. PubMed ID: 15107949 [TBL] [Abstract][Full Text] [Related]
6. Spray-dried Bacillus thuringiensis Serovar israelensis formulations for control of Aedes aegypti larvae. Ramírez-Suero M; Robles-Olvera V; Ramírez-Lepe M J Econ Entomol; 2005 Oct; 98(5):1494-8. PubMed ID: 16334315 [TBL] [Abstract][Full Text] [Related]
7. Microencapsulation of an indigenous isolate of Eski A; Demirbağ Z; Demir İ J Microencapsul; 2019 Jan; 36(1):1-9. PubMed ID: 30836029 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the synergistic interaction between Beauveria bassiana strain GHA and Bacillus thuringiensis morrisoni strain tenebrionis applied against Colorado potato beetle larvae. Wraight SP; Ramos ME J Invertebr Pathol; 2017 Mar; 144():47-57. PubMed ID: 28108175 [TBL] [Abstract][Full Text] [Related]
9. Screening of different adjuvants for wastewater/wastewater sludge-based Bacillus thuringiensis formulations. Brar SK; Verma M; Tyagi RD; Valéro JR; Surampalli RY J Econ Entomol; 2006 Aug; 99(4):1065-79. PubMed ID: 16937657 [TBL] [Abstract][Full Text] [Related]
10. Effects of ionic and nonionic surfactants on milk shell wettability during co-spray-drying of whole milk particles. Lallbeeharry P; Tian Y; Fu N; Wu WD; Woo MW; Selomulya C; Chen XD J Dairy Sci; 2014 Sep; 97(9):5303-14. PubMed ID: 24997659 [TBL] [Abstract][Full Text] [Related]
11. Effects of spray drying on the content of crystal proteins of Bacillus thuringiensis and the protection by organic and inorganic auxiliaries. Zhang X; Zhou X; Yang Y; Chang J; Qu Q; Niu Y Bioprocess Biosyst Eng; 2024 Nov; 47(11):1903-1914. PubMed ID: 39133299 [TBL] [Abstract][Full Text] [Related]
13. Optimization of spray drying process for Bacillus thuringiensis fermented wastewater and wastewater sludge. Adjallé KD; Vu KD; Tyagi RD; Brar SK; Valéro JR; Surampalli RY Bioprocess Biosyst Eng; 2011 Feb; 34(2):237-46. PubMed ID: 20835715 [TBL] [Abstract][Full Text] [Related]
14. Stabilization of IgG1 in spray-dried powders for inhalation. Schüle S; Schulz-Fademrecht T; Garidel P; Bechtold-Peters K; Frieb W Eur J Pharm Biopharm; 2008 Aug; 69(3):793-807. PubMed ID: 18477504 [TBL] [Abstract][Full Text] [Related]
15. Encapsulation of Bacillus thuringiensis in an inverse Pickering emulsion for pest control applications. Yaakov N; Kottakota C; Mani KA; Naftali SM; Zelinger E; Davidovitz M; Ment D; Mechrez G Colloids Surf B Biointerfaces; 2022 May; 213():112427. PubMed ID: 35219966 [TBL] [Abstract][Full Text] [Related]
16. Assessment of microencapsulated formulations for improved residual activity of Bacillus thuringiensis. Tamez-Guerra P; McGuire MR; Behle RW; Shasha BS; Wong LJ J Econ Entomol; 2000 Apr; 93(2):219-25. PubMed ID: 10826165 [TBL] [Abstract][Full Text] [Related]
17. Expression of chitinase-encoding genes in Bacillus thuringiensis and toxicity of engineered B. thuringiensis subsp. aizawai toward Lymantria dispar larvae. Lertcanawanichakul M; Wiwat C; Bhumiratana A; Dean DH Curr Microbiol; 2004 Mar; 48(3):175-81. PubMed ID: 15057461 [TBL] [Abstract][Full Text] [Related]
18. Laboratory and field tests of spray-dried and granular formulations of a Bacillus thuringiensis strain with insecticidal activity against the sugarcane borer. Rosas-García NM Pest Manag Sci; 2006 Sep; 62(9):855-61. PubMed ID: 16786544 [TBL] [Abstract][Full Text] [Related]
19. Selection and characterisation of an HD1-like Bacillus thuringiensis isolate with a high insecticidal activity against Spodoptera littoralis (Lepidoptera: Noctuidae). Azzouz H; Kebaili-Ghribi J; ben Farhat-Touzri D; Daoud F; Fakhfakh I; Tounsi S; Jaoua S Pest Manag Sci; 2014 Aug; 70(8):1192-201. PubMed ID: 24124020 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of methylated soy oil and water-based formulations of Bacillus thuringiensis var. Israelensis and Golden Bear Oil (GB-1111) against anopheles quadrimaculatus larvae in small rice plots. Dennett JA; Lampman RL; Novak RJ; Meisch MV J Am Mosq Control Assoc; 2000 Dec; 16(4):342-5. PubMed ID: 11198923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]