BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 14995164)

  • 1. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing.
    Jahn A; Vreeland WN; Gaitan M; Locascio LE
    J Am Chem Soc; 2004 Mar; 126(9):2674-5. PubMed ID: 14995164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic directed formation of liposomes of controlled size.
    Jahn A; Vreeland WN; DeVoe DL; Locascio LE; Gaitan M
    Langmuir; 2007 May; 23(11):6289-93. PubMed ID: 17451256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing.
    Lo CT; Jahn A; Locascio LE; Vreeland WN
    Langmuir; 2010 Jun; 26(11):8559-66. PubMed ID: 20146467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic mixing and the formation of nanoscale lipid vesicles.
    Jahn A; Stavis SM; Hong JS; Vreeland WN; DeVoe DL; Gaitan M
    ACS Nano; 2010 Apr; 4(4):2077-87. PubMed ID: 20356060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices.
    Vreeland WN; Locascio LE
    Anal Chem; 2003 Dec; 75(24):6906-11. PubMed ID: 14670052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles.
    Hong JS; Stavis SM; DePaoli Lacerda SH; Locascio LE; Raghavan SR; Gaitan M
    Langmuir; 2010 Jul; 26(13):11581-8. PubMed ID: 20429539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of micro-mixing on the size of liposomes self-assembled from miscible liquid phases.
    Phapal SM; Sunthar P
    Chem Phys Lipids; 2013; 172-173():20-30. PubMed ID: 23669147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic delivery of small molecules into mammalian cells based on hydrodynamic focusing.
    Wang F; Wang H; Wang J; Wang HY; Rummel PL; Garimella SV; Lu C
    Biotechnol Bioeng; 2008 May; 100(1):150-8. PubMed ID: 18078299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system.
    Shestopalov I; Tice JD; Ismagilov RF
    Lab Chip; 2004 Aug; 4(4):316-21. PubMed ID: 15269797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freezing continuous-flow self-assembly in a microfluidic device: toward imaging of liposome formation.
    Jahn A; Lucas F; Wepf RA; Dittrich PS
    Langmuir; 2013 Feb; 29(5):1717-23. PubMed ID: 23289615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-induced mixing in microfluidic channels.
    Hellman AN; Rau KR; Yoon HH; Bae S; Palmer JF; Phillips KS; Allbritton NL; Venugopalan V
    Anal Chem; 2007 Jun; 79(12):4484-92. PubMed ID: 17508715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled assembly of jammed colloidal shells on fluid droplets.
    Subramaniam AB; Abkarian M; Stone HA
    Nat Mater; 2005 Jul; 4(7):553-6. PubMed ID: 15937488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleoside-based phospholipids and their liposomes formed in water.
    Choi SK; Vu TK; Jung JM; Kim SJ; Jung HR; Chang T; Kim BH
    Chembiochem; 2005 Feb; 6(2):432-9. PubMed ID: 15678427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of continuous flow nanosphere formation by controlled microfluidic transport.
    Laulicht B; Cheifetz P; Mathiowitz E; Tripathi A
    Langmuir; 2008 Sep; 24(17):9717-26. PubMed ID: 18681411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA.
    Herrmann M; Veres T; Tabrizian M
    Lab Chip; 2006 Apr; 6(4):555-60. PubMed ID: 16572219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization.
    Kastner E; Kaur R; Lowry D; Moghaddam B; Wilkinson A; Perrie Y
    Int J Pharm; 2014 Dec; 477(1-2):361-8. PubMed ID: 25455778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular labeling method for chip-based capillary electrophoresis fluorimetric single cell analysis using liposomes.
    Sun Y; Lu M; Yin XF; Gong XG
    J Chromatogr A; 2006 Nov; 1135(1):109-14. PubMed ID: 17005186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single-step method of liposome preparation.
    Zawada Z
    Cell Mol Biol Lett; 2004; 9(4A):603-15. PubMed ID: 15647784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty alcohols or fatty acids as niosomal hybrid carrier: effect on vesicle size, encapsulation efficiency and in vitro dye release.
    Bandyopadhyay P; Johnson M
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):68-71. PubMed ID: 17339104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic methods for production of liposomes.
    Yu B; Lee RJ; Lee LJ
    Methods Enzymol; 2009; 465():129-41. PubMed ID: 19913165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.