These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Influence of micro-mixing on the size of liposomes self-assembled from miscible liquid phases. Phapal SM; Sunthar P Chem Phys Lipids; 2013; 172-173():20-30. PubMed ID: 23669147 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic delivery of small molecules into mammalian cells based on hydrodynamic focusing. Wang F; Wang H; Wang J; Wang HY; Rummel PL; Garimella SV; Lu C Biotechnol Bioeng; 2008 May; 100(1):150-8. PubMed ID: 18078299 [TBL] [Abstract][Full Text] [Related]
9. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Shestopalov I; Tice JD; Ismagilov RF Lab Chip; 2004 Aug; 4(4):316-21. PubMed ID: 15269797 [TBL] [Abstract][Full Text] [Related]
10. Freezing continuous-flow self-assembly in a microfluidic device: toward imaging of liposome formation. Jahn A; Lucas F; Wepf RA; Dittrich PS Langmuir; 2013 Feb; 29(5):1717-23. PubMed ID: 23289615 [TBL] [Abstract][Full Text] [Related]
12. Controlled assembly of jammed colloidal shells on fluid droplets. Subramaniam AB; Abkarian M; Stone HA Nat Mater; 2005 Jul; 4(7):553-6. PubMed ID: 15937488 [TBL] [Abstract][Full Text] [Related]
13. Nucleoside-based phospholipids and their liposomes formed in water. Choi SK; Vu TK; Jung JM; Kim SJ; Jung HR; Chang T; Kim BH Chembiochem; 2005 Feb; 6(2):432-9. PubMed ID: 15678427 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of continuous flow nanosphere formation by controlled microfluidic transport. Laulicht B; Cheifetz P; Mathiowitz E; Tripathi A Langmuir; 2008 Sep; 24(17):9717-26. PubMed ID: 18681411 [TBL] [Abstract][Full Text] [Related]
15. Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA. Herrmann M; Veres T; Tabrizian M Lab Chip; 2006 Apr; 6(4):555-60. PubMed ID: 16572219 [TBL] [Abstract][Full Text] [Related]
16. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. Kastner E; Kaur R; Lowry D; Moghaddam B; Wilkinson A; Perrie Y Int J Pharm; 2014 Dec; 477(1-2):361-8. PubMed ID: 25455778 [TBL] [Abstract][Full Text] [Related]
17. Intracellular labeling method for chip-based capillary electrophoresis fluorimetric single cell analysis using liposomes. Sun Y; Lu M; Yin XF; Gong XG J Chromatogr A; 2006 Nov; 1135(1):109-14. PubMed ID: 17005186 [TBL] [Abstract][Full Text] [Related]
18. A single-step method of liposome preparation. Zawada Z Cell Mol Biol Lett; 2004; 9(4A):603-15. PubMed ID: 15647784 [TBL] [Abstract][Full Text] [Related]
19. Fatty alcohols or fatty acids as niosomal hybrid carrier: effect on vesicle size, encapsulation efficiency and in vitro dye release. Bandyopadhyay P; Johnson M Colloids Surf B Biointerfaces; 2007 Jul; 58(1):68-71. PubMed ID: 17339104 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic methods for production of liposomes. Yu B; Lee RJ; Lee LJ Methods Enzymol; 2009; 465():129-41. PubMed ID: 19913165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]