BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 14995196)

  • 1. Dynamic docking and electron-transfer between cytochrome b5 and a suite of myoglobin surface-charge mutants. Introduction of a functional-docking algorithm for protein-protein complexes.
    Liang ZX; Kurnikov IV; Nocek JM; Mauk AG; Beratan DN; Hoffman BM
    J Am Chem Soc; 2004 Mar; 126(9):2785-98. PubMed ID: 14995196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic docking of cytochrome b5 with myoglobin and alpha-hemoglobin: heme-neutralization "squares" and the binding of electron-transfer-reactive configurations.
    Wheeler KE; Nocek JM; Cull DA; Yatsunyk LA; Rosenzweig AC; Hoffman BM
    J Am Chem Soc; 2007 Apr; 129(13):3906-17. PubMed ID: 17343378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic docking and electron transfer between myoglobin and cytochrome b(5).
    Liang ZX; Jiang M; Ning Q; Hoffman BM
    J Biol Inorg Chem; 2002 Jun; 7(6):580-8. PubMed ID: 12072963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic docking and electron transfer between Zn-myoglobin and cytochrome b(5).
    Liang ZX; Nocek JM; Huang K; Hayes RT; Kurnikov IV; Beratan DN; Hoffman BM
    J Am Chem Soc; 2002 Jun; 124(24):6849-59. PubMed ID: 12059205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolving the [myoglobin, cytochrome b(5)] complex from dynamic toward simple docking: charging the electron transfer reactive patch.
    Trana EN; Nocek JM; Knutson AK; Hoffman BM
    Biochemistry; 2012 Oct; 51(43):8542-53. PubMed ID: 23067206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic redesign of the [myoglobin, cytochrome b5] interface to create a well-defined docked complex with rapid interprotein electron transfer.
    Xiong P; Nocek JM; Griffin AK; Wang J; Hoffman BM
    J Am Chem Soc; 2009 May; 131(20):6938-9. PubMed ID: 19419145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the electron transfer interface between cytochrome b5 and cytochrome c.
    Ren Y; Wang WH; Wang YH; Case M; Qian W; McLendon G; Huang ZX
    Biochemistry; 2004 Mar; 43(12):3527-36. PubMed ID: 15035623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of apo-cytochrome b5 utilizing heme transfer to apo-myoglobin.
    Mrazova B; Martinek V; Martinkova M; Sulc M; Frei E; Stiborova M
    Neuro Endocrinol Lett; 2009; 30 Suppl 1():72-9. PubMed ID: 20027148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoinitiated singlet and triplet electron transfer across a redesigned [myoglobin, cytochrome b5] interface.
    Nocek JM; Knutson AK; Xiong P; Co NP; Hoffman BM
    J Am Chem Soc; 2010 May; 132(17):6165-75. PubMed ID: 20392066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial hydration, dynamics and electron transfer: multi-scale ET modeling of the transient [myoglobin, cytochrome b5] complex.
    Keinan S; Nocek JM; Hoffman BM; Beratan DN
    Phys Chem Chem Phys; 2012 Oct; 14(40):13881-9. PubMed ID: 22955681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the heme propionates in the interaction of heme with apomyoglobin and apocytochrome b5.
    Hunter CL; Lloyd E; Eltis LD; Rafferty SP; Lee H; Smith M; Mauk AG
    Biochemistry; 1997 Feb; 36(5):1010-7. PubMed ID: 9033390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study of electron transport in heme proteins. X. Effect of pH, ionic strength, and zinc ions and the rate of ferricytochrome c reduction by oxymyoglobin from swine heart].
    Postnikova GB; Tselikova SV; Sivozhelezov VS
    Mol Biol (Mosk); 1992; 26(4):880-90. PubMed ID: 1331770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Electron transfer in hemoproteins. VIII. Influence of ionic strength on the rate of reduction of ferricytochrome c by oxymyoglobin derivatives, chemically modified at histidine residues].
    Postnikova GB; Shliapnikova EA; Atanasov BP; Vol'kenshteĭn
    Mol Biol (Mosk); 1982; 16(1):104-16. PubMed ID: 6280031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c.
    Rodríguez-Marañón MJ; Qiu F; Stark RE; White SP; Zhang X; Foundling SI; Rodríguez V; Schilling CL; Bunce RA; Rivera M
    Biochemistry; 1996 Dec; 35(50):16378-90. PubMed ID: 8973214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering out motion: introduction of a de novo disulfide bond and a salt bridge designed to close a dynamic cleft on the surface of cytochrome b5.
    Storch EM; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5054-64. PubMed ID: 10213608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of mutation at Glu44 and Glu56 of cytochrome b5 on the protein's stabilization and interaction between cytochrome c and cytochrome b5.
    Qian W; Sun YL; Wang YH; Zhuang JH; Xie Y; Huang ZX
    Biochemistry; 1998 Oct; 37(40):14137-50. PubMed ID: 9760250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the basic residues of cytochrome f responsible for electrostatic docking interactions with plastocyanin in vitro: relevance to the electron transfer reaction in vivo.
    Soriano GM; Ponamarev MV; Piskorowski RA; Cramer WA
    Biochemistry; 1998 Oct; 37(43):15120-8. PubMed ID: 9790675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Applicability of molecular electrostatic interaction models to describing ionic strength dependence of reaction rate between myoglobin and cytochrome c].
    Komarov IuE; Sivozhelezov VS; Postnikova GB
    Biofizika; 1998; 43(1):16-25. PubMed ID: 9567172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of Electrostatics to the Kinetics of Electron Transfer from NADH-Cytochrome b5 Reductase to Fe(III)-Cytochrome b5.
    Kollipara S; Tatireddy S; Pathirathne T; Rathnayake LK; Northrup SH
    J Phys Chem B; 2016 Aug; 120(33):8193-207. PubMed ID: 27059440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and reactions of myoglobin mutants bearing both proximal cysteine ligand and hydrophobic distal cavity: protein models for the active site of P-450.
    Matsui T; Nagano S; Ishimori K; Watanabe Y; Morishima I
    Biochemistry; 1996 Oct; 35(40):13118-24. PubMed ID: 8855949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.