BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 14995203)

  • 21. Recognition properties of donor- and acceptor-modified biphenyl-DNA.
    Zahn A; Leumann CJ
    Chemistry; 2008; 14(4):1087-94. PubMed ID: 18041013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exceptional thermodynamic stability of DNA duplexes modified by nonpolar base analogues is due to increased stacking interactions and favorable solvation: Correlated ab initio calculations and molecular dynamics simulations.
    Reha D; Hocek M; Hobza P
    Chemistry; 2006 Apr; 12(13):3587-95. PubMed ID: 16502452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR studies of DNA single strands and DNA:RNA hybrids with and without 1-propynylation at C5 of oligopyrimidines.
    Znosko BM; Barnes TW; Krugh TR; Turner DH
    J Am Chem Soc; 2003 May; 125(20):6090-7. PubMed ID: 12785839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The energetics of i-DNA tetraplex structures formed intermolecularly by d(TC5) and intramolecularly by d[(C5T3)3C5].
    Völker J; Klump HH; Breslauer KJ
    Biopolymers; 2007 Jun; 86(2):136-47. PubMed ID: 17330895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High fidelity base pairing at the 3'-terminus.
    Patra A; Richert C
    J Am Chem Soc; 2009 Sep; 131(35):12671-81. PubMed ID: 19722718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simple method for determining nucleobase pK(a) values by indirect labeling and demonstration of a pK(a) of neutrality in dsDNA.
    Moody EM; Brown TS; Bevilacqua PC
    J Am Chem Soc; 2004 Aug; 126(33):10200-1. PubMed ID: 15315405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bipyridyl- and biphenyl-DNA: a recognition motif based on interstrand aromatic stacking.
    Brotschi C; Mathis G; Leumann CJ
    Chemistry; 2005 Mar; 11(6):1911-23. PubMed ID: 15685710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Urea Mimics Nucleobases by Preserving the Helical Integrity of B-DNA Duplexes via Hydrogen Bonding and Stacking Interactions.
    Suresh G; Padhi S; Patil I; Priyakumar UD
    Biochemistry; 2016 Oct; 55(40):5653-5664. PubMed ID: 27657980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen bonding versus stacking stabilization by modified nucleobases incorporated in PNA.DNA duplexes.
    Sen A; Nielsen PE
    Biophys Chem; 2009 Apr; 141(1):29-33. PubMed ID: 19162391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ground-state recovery following UV excitation is much slower in G x C-DNA duplexes and hairpins than in mononucleotides.
    Crespo-Hernández CE; de la Harpe K; Kohler B
    J Am Chem Soc; 2008 Aug; 130(33):10844-5. PubMed ID: 18646753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tandem electrostatic effect from the first to the third aglycon in the trimeric RNA owing to the nearest-neighbor interaction.
    Acharya P; Acharya S; Földesi A; Chattopadhyaya J
    J Am Chem Soc; 2003 Feb; 125(8):2094-100. PubMed ID: 12590537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for Watson-Crick and not Hoogsteen or wobble base pairing in the selection of nucleotides for insertion opposite pyrimidines and a thymine dimer by yeast DNA pol eta.
    Hwang H; Taylor JS
    Biochemistry; 2005 Mar; 44(12):4850-60. PubMed ID: 15779911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A series of nonpolar thymidine analogues of increasing size: DNA base pairing and stacking properties.
    Kim TW; Kool ET
    J Org Chem; 2005 Mar; 70(6):2048-53. PubMed ID: 15760186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating the contributions of desolvation and base-stacking during translesion DNA synthesis.
    Zhang X; Lee I; Berdis AJ
    Org Biomol Chem; 2004 Jun; 2(12):1703-11. PubMed ID: 15188037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parallel DNA double helices incorporating isoG or m5isoC bases studied by FTIR, CD and molecular modeling.
    Geinguenaud F; Mondragon-Sanchez JA; Liquier J; Shchyolkina AK; Klement R; Arndt-Jovin DJ; Jovin TM; Taillandier E
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):579-87. PubMed ID: 15649787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functionalization of DNA by the base pair-mimic nucleosides.
    Oka H; Nakano S; Uotani Y; Uenishi K; Fujii M; Sugimoto N
    Nucleic Acids Symp Ser (Oxf); 2007; (51):151-2. PubMed ID: 18029631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Site-selective RNA cleavage by DNA bearing a base pair-mimic nucleoside.
    Nakano S; Uotani Y; Uenishi K; Fujii M; Sugimoto N
    J Am Chem Soc; 2005 Jan; 127(2):518-9. PubMed ID: 15643864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the role of hydrogen bonds in the stability of base pairs in double-helical DNA.
    Every AE; Russu IM
    Biopolymers; 2007 Oct 5-15; 87(2-3):165-73. PubMed ID: 17636510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3' terminal nucleotides determine thermodynamic stabilities of mismatches at the ends of RNA helices.
    Clanton-Arrowood K; McGurk J; Schroeder SJ
    Biochemistry; 2008 Dec; 47(50):13418-27. PubMed ID: 19053257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.