These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 14995292)

  • 1. Experimental investigation of a bistable system in the presence of noise and delay.
    Houlihan J; Goulding D; Busch T; Masoller C; Huyet G
    Phys Rev Lett; 2004 Feb; 92(5):050601. PubMed ID: 14995292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delay-induced excitability.
    Piwonski T; Houlihan J; Busch T; Huyet G
    Phys Rev Lett; 2005 Jul; 95(4):040601. PubMed ID: 16090791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of residence times in bistable noisy systems with time-delayed feedback.
    Curtin D; Hegarty SP; Goulding D; Houlihan J; Busch T; Masoller C; Huyet G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031103. PubMed ID: 15524502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evidence of coherence resonance in a time-delayed bistable system.
    Arteaga MA; Valencia M; Sciamanna M; Thienpont H; López-Amo M; Panajotov K
    Phys Rev Lett; 2007 Jul; 99(2):023903. PubMed ID: 17678225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of residence times of time-delayed bistable systems driven by noise.
    Masoller C
    Phys Rev Lett; 2003 Jan; 90(2):020601. PubMed ID: 12570531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating resonance behaviors by noise recycling in bistable systems with time delay.
    Sun Z; Yang X; Xiao Y; Xu W
    Chaos; 2014 Jun; 24(2):023126. PubMed ID: 24985440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise-induced dynamics in bistable systems with delay.
    Tsimring LS; Pikovsky A
    Phys Rev Lett; 2001 Dec; 87(25):250602. PubMed ID: 11736552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise-induced coherence in bistable systems with multiple time delays.
    Jiang Y; Dong SH; Lozada-Cassou M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056225. PubMed ID: 15244922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delay-induced stochastic bifurcations in a bistable system under white noise.
    Sun Z; Fu J; Xiao Y; Xu W
    Chaos; 2015 Aug; 25(8):083102. PubMed ID: 26328553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of response of a bistable VCSEL to modulated orthogonal optical feedback by vibrational resonance.
    Chizhevsky VN
    Opt Lett; 2012 Nov; 37(21):4386-8. PubMed ID: 23114304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ghost stochastic resonance in vertical-cavity surface-emitting lasers: experiment and theory.
    Van der Sande G; Verschaffelt G; Danckaert J; Mirasso CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016113. PubMed ID: 16090042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency adaptation in controlled stochastic resonance utilizing delayed feedback method: two-pole approximation for response function.
    Tutu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061106. PubMed ID: 21797301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance dynamics evoked via noise recycling procedure.
    Sun Z; Yang X; Xu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061125. PubMed ID: 23005069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of resonant activation in a noisy bistable vertical-cavity surface-emitting laser with strong periodic excitation.
    Chizhevsky VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061139. PubMed ID: 20365150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and theoretical study of the noise-induced gain degradation in vibrational resonance.
    Chizhevsky VN; Giacomelli G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):062101. PubMed ID: 15697411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1/f noise in the intensity fluctuations of vertical-cavity surface-emitting lasers subject to parallel optical injection.
    Rodríguez MA; Coarer FD; Valle Á
    Phys Rev E; 2018 Apr; 97(4-1):042105. PubMed ID: 29758632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal model with distributed delay: analysis and simulation study for gamma distribution memory kernel.
    Karmeshu ; Gupta V; Kadambari KV
    Biol Cybern; 2011 Jun; 104(6):369-83. PubMed ID: 21701877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of optical feedback on current-induced polarization behavior of 1550 nm vertical-cavity surface-emitting lasers.
    Deng T; Wu ZM; Xie YY; Wu JG; Tang X; Fan L; Panajotov K; Xia GQ
    Appl Opt; 2013 Jun; 52(16):3833-7. PubMed ID: 23736341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers.
    Sciamanna M; Panajotov K; Thienpont H; Veretennicoff I; Mégret P; Blondel M
    Opt Lett; 2003 Sep; 28(17):1543-5. PubMed ID: 12956373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal Scaling in the Dynamic Hysteresis, and Non-Markovian Dynamics, of a Tunable Optical Cavity.
    Geng Z; Peters KJH; Trichet AAP; Malmir K; Kolkowski R; Smith JM; Rodriguez SRK
    Phys Rev Lett; 2020 Apr; 124(15):153603. PubMed ID: 32357047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.