These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 14995311)

  • 1. Geometrically mediated breakup of drops in microfluidic devices.
    Link DR; Anna SL; Weitz DA; Stone HA
    Phys Rev Lett; 2004 Feb; 92(5):054503. PubMed ID: 14995311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive breakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries: experiments and models.
    Salkin L; Schmit A; Courbin L; Panizza P
    Lab Chip; 2013 Aug; 13(15):3022-32. PubMed ID: 23743651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels.
    Cheng WL; Sadr R; Dai J; Han A
    Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Valves for Selective on-Chip Droplet Splitting at Multiple Sites.
    Agnihotri SN; Raveshi MR; Bhardwaj R; Neild A
    Langmuir; 2020 Feb; 36(5):1138-1146. PubMed ID: 31968938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designed pneumatic valve actuators for controlled droplet breakup and generation.
    Choi JH; Lee SK; Lim JM; Yang SM; Yi GR
    Lab Chip; 2010 Feb; 10(4):456-61. PubMed ID: 20126685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model.
    De Menech M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031505. PubMed ID: 16605530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures.
    Moon BU; Jones SG; Hwang DK; Tsai SS
    Lab Chip; 2015 Jun; 15(11):2437-44. PubMed ID: 25906146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding droplet breakup in a post-array device with sheath-flow configuration.
    Masui S; Kanno Y; Nisisako T
    Lab Chip; 2023 Nov; 23(23):4959-4966. PubMed ID: 37873662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative breakups induced by drop-to-drop interactions in one-dimensional flows of drops against micro-obstacles.
    Schmit A; Salkin L; Courbin L; Panizza P
    Soft Matter; 2015 Mar; 11(12):2454-60. PubMed ID: 25668310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet breakup in microfluidic junctions of arbitrary angles.
    Ménétrier-Deremble L; Tabeling P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035303. PubMed ID: 17025697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices.
    Okushima S; Nisisako T; Torii T; Higuchi T
    Langmuir; 2004 Nov; 20(23):9905-8. PubMed ID: 15518471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets.
    Liu Y; Jung SY; Collier CP
    Anal Chem; 2009 Jun; 81(12):4922-8. PubMed ID: 19441820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions.
    Christopher GF; Noharuddin NN; Taylor JA; Anna SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036317. PubMed ID: 18851153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of triangular obstacles on droplet breakup dynamics in microfluidic systems.
    Tazikeh Lemeski A; Seyyedi SM; Hashemi-Tilehnoee M; Naeimi AS
    Sci Rep; 2024 Jun; 14(1):13324. PubMed ID: 38858444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capillary-Based Microfluidics-Coflow, Flow-Focusing, Electro-Coflow, Drops, Jets, and Instabilities.
    Guerrero J; Chang YW; Fragkopoulos AA; Fernandez-Nieves A
    Small; 2020 Mar; 16(9):e1904344. PubMed ID: 31663270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple, robust storage of drops and fluids in a microfluidic device.
    Boukellal H; Selimović S; Jia Y; Cristobal G; Fraden S
    Lab Chip; 2009 Jan; 9(2):331-8. PubMed ID: 19107293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices.
    Jeong WC; Lim JM; Choi JH; Kim JH; Lee YJ; Kim SH; Lee G; Kim JD; Yi GR; Yang SM
    Lab Chip; 2012 Apr; 12(8):1446-53. PubMed ID: 22402819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows.
    Gupta A; Sbragaglia M; Belardinelli D; Sugiyama K
    Phys Rev E; 2016 Dec; 94(6-1):063302. PubMed ID: 28085339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.