These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 14995387)

  • 1. Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures.
    Lundgren E; Gustafson J; Mikkelsen A; Andersen JN; Stierle A; Dosch H; Todorova M; Rogal J; Reuter K; Scheffler M
    Phys Rev Lett; 2004 Jan; 92(4):046101. PubMed ID: 14995387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A surface x-ray study of the structure and morphology of the oxidized Pd001 surface.
    Stierle A; Kasper N; Dosch H; Lundgren E; Gustafson J; Mikkelsen A; Andersen JN
    J Chem Phys; 2005 Jan; 122(4):44706. PubMed ID: 15740282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the reactivity of different Pd-O species in CO oxidation.
    Gabasch H; Knop-Gericke A; Schlögl R; Borasio M; Weilach C; Rupprechter G; Penner S; Jenewein B; Hayek K; Klötzer B
    Phys Chem Chem Phys; 2007 Jan; 9(4):533-40. PubMed ID: 17216069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial oxidation of the Rh(110) surface: ordered adsorption and surface oxide structures.
    Dri C; Africh C; Esch F; Comelli G; Dubay O; Köhler L; Mittendorfer F; Kresse G; Dudin P; Kiskinova M
    J Chem Phys; 2006 Sep; 125(9):094701. PubMed ID: 16965099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial oxidation of a Rh(110) surface using atomic or molecular oxygen and reduction of the surface oxide by hydrogen.
    Dudin P; Barinov A; Gregoratti L; Kiskinova M; Esch F; Dri C; Africh C; Comelli G
    J Phys Chem B; 2005 Jul; 109(28):13649-55. PubMed ID: 16852710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ spectroscopic study of the oxidation and reduction of Pd(111).
    Ketteler G; Ogletree DF; Bluhm H; Liu H; Hebenstreit EL; Salmeron M
    J Am Chem Soc; 2005 Dec; 127(51):18269-73. PubMed ID: 16366581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface structure and reactivity of Pd(100) during CO oxidation near ambient pressures.
    van Rijn R; Balmes O; Resta A; Wermeille D; Westerström R; Gustafson J; Felici R; Lundgren E; Frenken JW
    Phys Chem Chem Phys; 2011 Aug; 13(29):13167-71. PubMed ID: 21681289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of O(2) with Pd nanoparticles on alpha-Al(2)O(3)(0001) at low and high O(2) pressures.
    Penner S; Bera P; Pedersen S; Ngo LT; Harris JJ; Campbell CT
    J Phys Chem B; 2006 Dec; 110(48):24577-84. PubMed ID: 17134218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen adsorption-induced nanostructures and island formation on Cu{100}: Bridging the gap between the formation of surface confined oxygen chemisorption layer and oxide formation.
    Lahtonen K; Hirsimäki M; Lampimäki M; Valden M
    J Chem Phys; 2008 Sep; 129(12):124703. PubMed ID: 19045044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a ReaxFF potential for Pd∕O and application to palladium oxide formation.
    Senftle TP; Meyer RJ; Janik MJ; van Duin AC
    J Chem Phys; 2013 Jul; 139(4):044109. PubMed ID: 23901962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of palladium on Au(111) and ZnO(0001) supports.
    Lallo J; Tenney SA; Kramer A; Sutter P; Batzill M
    J Chem Phys; 2014 Oct; 141(15):154702. PubMed ID: 25338906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition metal surfaces under oxygen-rich conditions (abstract only).
    Seriani N
    J Phys Condens Matter; 2008 Feb; 20(6):064213. PubMed ID: 21693875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ru(0001) model catalyst under oxidizing and reducing reaction conditions: in-situ high-pressure surface X-ray diffraction study.
    He YB; Knapp M; Lundgren E; Over H
    J Phys Chem B; 2005 Nov; 109(46):21825-30. PubMed ID: 16853834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A first-principles study of bulk oxide formation on Pd(100).
    Seriani N; Harl J; Mittendorfer F; Kresse G
    J Chem Phys; 2009 Aug; 131(5):054701. PubMed ID: 19673579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox functionality mediated by adsorbed oxygen on a Pd oxide film over a Pd(100) thin structure: a first-principles study.
    Kusakabe K; Harada K; Ikuno YK; Nagara H
    J Phys Condens Matter; 2009 Dec; 21(48):485003. PubMed ID: 21832510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ oxidation study of Pd-Rh nanoparticles on MgAl₂O₄(001).
    Müller P; Hejral U; Rütt U; Stierle A
    Phys Chem Chem Phys; 2014 Jul; 16(27):13866-74. PubMed ID: 24894349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active Surface Oxygen for Catalytic CO Oxidation on Pd(100) Proceeding under Near Ambient Pressure Conditions.
    Toyoshima R; Yoshida M; Monya Y; Suzuki K; Mun BS; Amemiya K; Mase K; Kondoh H
    J Phys Chem Lett; 2012 Nov; 3(21):3182-7. PubMed ID: 26296026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoter effect of BaO on CO oxidation on PdO surfaces.
    Hirvi JT; Kallinen K; Kinnunen TJ; Suvanto M; Pakkanen TA
    J Chem Phys; 2012 Feb; 136(8):084704. PubMed ID: 22380056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vacancy-Mediated Processes in the Oxidation of CO on PdO(101).
    Weaver JF; Zhang F; Pan L; Li T; Asthagiri A
    Acc Chem Res; 2015 May; 48(5):1515-23. PubMed ID: 25933250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions.
    Reuter K; Scheffler M
    Phys Rev Lett; 2003 Jan; 90(4):046103. PubMed ID: 12570437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.