These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 14995392)

  • 1. Quantum confinement in phosphorus-doped silicon nanocrystals.
    Melnikov DV; Chelikowsky JR
    Phys Rev Lett; 2004 Jan; 92(4):046802. PubMed ID: 14995392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real space pseudopotential calculations for size trends in Ga- and Al-doped zinc oxide nanocrystals with wurtzite and zincblende structures.
    Bobbitt NS; Sai N; Marom N; Kim M; Chelikowsky JR
    J Chem Phys; 2014 Sep; 141(9):094309. PubMed ID: 25194374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals.
    Fujii M; Mimura A; Hayashi S; Yamamoto Y; Murakami K
    Phys Rev Lett; 2002 Nov; 89(20):206805. PubMed ID: 12443499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavily doped semiconductor nanocrystal quantum dots.
    Mocatta D; Cohen G; Schattner J; Millo O; Rabani E; Banin U
    Science; 2011 Apr; 332(6025):77-81. PubMed ID: 21454783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio study of phosphorus donors acting as quantum bits in silicon nanowires.
    Yan B; Rurali R; Gali A
    Nano Lett; 2012 Jul; 12(7):3460-5. PubMed ID: 22694292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the photon generation efficiency in phosphorus-doped silicon nanocrystals: Γ-X mixing of the confined electron states.
    Belyakov VA; Belov AI; Mikhaylov AN; Tetelbaum DI; Burdov VA
    J Phys Condens Matter; 2009 Jan; 21(4):045803. PubMed ID: 21715825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of SiO2 matrix on electronic and optical properties of Si nanocrystals.
    Seino K; Bechstedt F; Kroll P
    Nanotechnology; 2009 Apr; 20(13):135702. PubMed ID: 19420511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt-doped ZnO nanocrystals: quantum confinement and surface effects from ab initio methods.
    Schoenhalz AL; Dalpian GM
    Phys Chem Chem Phys; 2013 Oct; 15(38):15863-8. PubMed ID: 23942732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum confined electron-phonon interaction in silicon nanocrystals.
    Sagar DM; Atkin JM; Palomaki PK; Neale NR; Blackburn JL; Johnson JC; Nozik AJ; Raschke MB; Beard MC
    Nano Lett; 2015 Mar; 15(3):1511-6. PubMed ID: 25626139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Confinement Regimes in CdTe Nanocrystals Probed by Single Dot Spectroscopy: From Strong Confinement to the Bulk Limit.
    Tilchin J; Rabouw FT; Isarov M; Vaxenburg R; Van Dijk-Moes RJ; Lifshitz E; Vanmaekelbergh D
    ACS Nano; 2015 Aug; 9(8):7840-5. PubMed ID: 26181051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magic electron affection in preparation process of silicon nanocrystal.
    Huang WQ; Liu SR; Huang ZM; Dong TG; Wang G; Qin CJ
    Sci Rep; 2015 Apr; 5():9932. PubMed ID: 25909481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles study of silicon nanocrystals: structural and electronic properties, absorption, emission, and doping.
    Ossicini S; Bisi O; Degoli E; Marri I; Iori F; Luppi E; Magri R; Poli R; Cantele G; Ninno D; Trani F; Marsili M; Pulci O; Olevano V; Gatti M; Gaal-Nagy K; Incze A; Onida G
    J Nanosci Nanotechnol; 2008 Feb; 8(2):479-92. PubMed ID: 18464361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of confinement on diffusion barriers in semiconductor nanocrystals.
    Chan TL; Zayak AT; Dalpian GM; Chelikowsky JR
    Phys Rev Lett; 2009 Jan; 102(2):025901. PubMed ID: 19257292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the Energy-Level Alignment of Silicon Carbide Nanocrystals by Combining Surface Chemistry with Quantum Confinement.
    Haq AU; Buerkle M; Askari S; Rocks C; Ni C; Švrček V; Maguire P; Irvine JTS; Mariotti D
    J Phys Chem Lett; 2020 Mar; 11(5):1721-1728. PubMed ID: 32040322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confinement effects and hyperfine structure in se doped silicon nanowires.
    Petretto G; Debernardi A; Fanciulli M
    Nano Lett; 2011 Nov; 11(11):4509-14. PubMed ID: 21950460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. n-type colloidal semiconductor nanocrystals.
    Shim M; Guyot-Sionnest P
    Nature; 2000 Oct; 407(6807):981-3. PubMed ID: 11069172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent spintronic properties of dilute magnetic semiconductor nanocrystals.
    Huang X; Makmal A; Chelikowsky JR; Kronik L
    Phys Rev Lett; 2005 Jun; 94(23):236801. PubMed ID: 16090492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel computational methods for nanostructure electronic structure calculations.
    Wang LW
    Annu Rev Phys Chem; 2010; 61():19-39. PubMed ID: 20055669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.