These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 14995461)

  • 1. Universality in two-dimensional Kardar-Parisi-Zhang growth.
    Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021610. PubMed ID: 14995461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crossover effects in a discrete deposition model with Kardar-Parisi-Zhang scaling.
    Chame A; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051104. PubMed ID: 12513464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of the Kardar-Parisi-Zhang equation.
    Miranda VG; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031134. PubMed ID: 18517356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universality and corrections to scaling in the ballistic deposition model.
    Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056116. PubMed ID: 11414970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of discrete models in the class of the nonlinear molecular beam epitaxy equation.
    Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031607. PubMed ID: 15524534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ballistic deposition patterns beneath a growing Kardar-Parisi-Zhang interface.
    Khanin K; Nechaev S; Oshanin G; Sobolevski A; Vasilyev O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061107. PubMed ID: 21230644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origins of scaling corrections in ballistic growth models.
    Alves SG; Oliveira TJ; Ferreira SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052405. PubMed ID: 25493801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.
    Halpin-Healy T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042118. PubMed ID: 24229127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremely large-scale simulation of a Kardar-Parisi-Zhang model using graphics cards.
    Kelling J; Ódo G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061150. PubMed ID: 22304083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal and nonuniversal features in the crossover from linear to nonlinear interface growth.
    Oliveira TJ; Dechoum K; Redinz JA; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011604. PubMed ID: 16907104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kardar-Parisi-Zhang growth on square domains that enlarge nonlinearly in time.
    Carrasco ISS; Oliveira TJ
    Phys Rev E; 2022 May; 105(5-1):054804. PubMed ID: 35706246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unpredicted Scaling of the One-Dimensional Kardar-Parisi-Zhang Equation.
    Fontaine C; Vercesi F; Brachet M; Canet L
    Phys Rev Lett; 2023 Dec; 131(24):247101. PubMed ID: 38181147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restricted solid-on-solid model with a proper restriction parameter N in 4+1 dimensions.
    Kim JM; Kim SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):034102. PubMed ID: 24125386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kardar-Parisi-Zhang universality of the Nagel-Schreckenberg model.
    de Gier J; Schadschneider A; Schmidt J; Schütz GM
    Phys Rev E; 2019 Nov; 100(5-1):052111. PubMed ID: 31869969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic transition in etching with poisoning.
    Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041602. PubMed ID: 14682948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of etching at a solid-solid interface.
    Alves WS; Rodrigues EA; Fernandes HA; Mello BA; Oliveira FA; Costa IV
    Phys Rev E; 2016 Oct; 94(4-1):042119. PubMed ID: 27841509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From cellular automata to growth dynamics: The Kardar-Parisi-Zhang universality class.
    Gomes WP; Penna ALA; Oliveira FA
    Phys Rev E; 2019 Aug; 100(2-1):020101. PubMed ID: 31574642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What is the connection between ballistic deposition and the Kardar-Parisi-Zhang equation?
    Katzav E; Schwartz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061608. PubMed ID: 15697382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-time growth of a Kardar-Parisi-Zhang interface with flat initial conditions.
    Gueudré T; Le Doussal P; Rosso A; Henry A; Calabrese P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041151. PubMed ID: 23214573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling of ballistic deposition from a Langevin equation.
    Haselwandter CA; Vvedensky DD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):040101. PubMed ID: 16711773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.