These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 14995529)

  • 1. Generation of spatiotemporal correlated noise in 1+1 dimensions.
    Traulsen A; Lippert K; Behn U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026116. PubMed ID: 14995529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized Ornstein-Uhlenbeck model for active motion.
    Sevilla FJ; Rodríguez RF; Gomez-Solano JR
    Phys Rev E; 2019 Sep; 100(3-1):032123. PubMed ID: 31640041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ornstein-Uhlenbeck process and generalizations: Particle dynamics under comb constraints and stochastic resetting.
    Trajanovski P; Jolakoski P; Zelenkovski K; Iomin A; Kocarev L; Sandev T
    Phys Rev E; 2023 May; 107(5-1):054129. PubMed ID: 37328979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalization of the escape rate from a metastable state driven by external cross-correlated noise processes.
    Chaudhuri JR; Chattopadhyay S; Banik SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021125. PubMed ID: 17930024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual eigenvalue spectrum and relaxation in the Lévy-Ornstein-Uhlenbeck process.
    Janakiraman D; Sebastian KL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):040101. PubMed ID: 25375420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Momentum relaxation of a relativistic Brownian particle.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061103. PubMed ID: 23367889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weiss mean-field approximation for multicomponent stochastic spatially extended systems.
    Kurushina SE; Maximov VV; Romanovskii YM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022135. PubMed ID: 25215716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact propagator for generalized Ornstein-Uhlenbeck processes.
    Mota-Furtado F; O'Mahony PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041102. PubMed ID: 17500860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Markovian stationary probability density for a harmonic oscillator in an electromagnetic field.
    Jiménez-Aquino JI; Romero-Bastida M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061115. PubMed ID: 23367901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiconductor laser systems excited by multiplicative Ornstein-Uhlenbeck noise and additive sine-Wiener noise in relation to real and imaginary parts.
    Han P; He G; Huang Z; Guo F
    Phys Rev E; 2024 Jun; 109(6-1):064126. PubMed ID: 39020954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution of the Fokker-Planck Equation by Cross Approximation Method in the Tensor Train Format.
    Chertkov A; Oseledets I
    Front Artif Intell; 2021; 4():668215. PubMed ID: 34409285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Ornstein-Uhlenbeck particles.
    Bonilla LL
    Phys Rev E; 2019 Aug; 100(2-1):022601. PubMed ID: 31574714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fokker-Planck-Kramers equation for a Brownian gas in a magnetic field.
    Jiménez-Aquino JI; Romero-Bastida M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041117. PubMed ID: 17155032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient variants of the minimal diffusion formulation of Markov chain ensembles.
    Güler M
    Phys Rev E; 2016 Feb; 93(2):022123. PubMed ID: 26986304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Damped stochastic system driven by colored noise: analytical solution by a path integral approach.
    Mahanta C; Venkatesh TG
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1509-20. PubMed ID: 11088614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic Fokker-Planck equation in random environments.
    Bressloff PC
    Phys Rev E; 2016 Oct; 94(4-1):042129. PubMed ID: 27841623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivation of quantum langevin equation from an explicit molecule-medium treatment in interaction picture.
    Datta SN
    J Phys Chem A; 2005 Dec; 109(50):11417-23. PubMed ID: 16354030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized Langevin dynamics of a nanoparticle using a finite element approach: thermostating with correlated noise.
    Uma B; Swaminathan TN; Ayyaswamy PS; Eckmann DM; Radhakrishnan R
    J Chem Phys; 2011 Sep; 135(11):114104. PubMed ID: 21950847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation.
    Gajda J; Magdziarz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011117. PubMed ID: 20866575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.