These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 14995563)

  • 1. Nonresonant beat-wave excitation of relativistic plasma waves with constant phase velocity for charged-particle acceleration.
    Filip CV; Narang R; Tochitsky SY; Clayton CE; Musumeci P; Yoder RB; Marsh KA; Rosenzweig JB; Pellegrini C; Joshi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026404. PubMed ID: 14995563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channeling of relativistic laser pulses, surface waves, and electron acceleration.
    Naseri N; Pesme D; Rozmus W; Popov K
    Phys Rev Lett; 2012 Mar; 108(10):105001. PubMed ID: 22463415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-driven plasma beat-wave propagation in a density-modulated plasma.
    Gupta DN; Nam IH; Suk H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056403. PubMed ID: 22181524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beat-wave excitation of plasma waves based on relativistic bistability.
    Shvets G
    Phys Rev Lett; 2004 Nov; 93(19):195004. PubMed ID: 15600843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beat wave injection of electrons into plasma waves using two interfering laser pulses.
    Fubiani G; Esarey E; Schroeder CB; Leemans WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016402. PubMed ID: 15324173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonresonant Charged-Particle Acceleration by Electrostatic Waves Propagating across Fluctuating Magnetic Field.
    Artemyev AV; Neishtadt AI; Vasiliev AA; Zelenyi LM
    Phys Rev Lett; 2015 Oct; 115(15):155001. PubMed ID: 26550729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear evolution of the plasma beat wave: Compressing the laser beat notes via electromagnetic cascading.
    Kalmykov S; Shvets G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046403. PubMed ID: 16711935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of magnetic field generation in unmagnetized plasmas via beat-wave current drive.
    Welch DR; Genoni TC; Thoma C; Bruner N; Rose DV; Hsu SC
    Phys Rev Lett; 2012 Nov; 109(22):225002. PubMed ID: 23368130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thomson-scattering measurements in the collective and noncollective regimes in laser produced plasmas (invited).
    Ross JS; Glenzer SH; Palastro JP; Pollock BB; Price D; Tynan GR; Froula DH
    Rev Sci Instrum; 2010 Oct; 81(10):10D523. PubMed ID: 21033878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic concepts in plasma accelerators.
    Bingham R
    Philos Trans A Math Phys Eng Sci; 2006 Mar; 364(1840):559-75. PubMed ID: 16483948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subharmonic resonances in plasmas: exponential and superexponential growth of driven relativistic plasma waves.
    Ren C; Dodd ES; Gordon D; Mori WB
    Phys Rev Lett; 2000 Oct; 85(16):3412-5. PubMed ID: 11030909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonresonant Scattering of Relativistic Electrons by Electromagnetic Ion Cyclotron Waves in Earth's Radiation Belts.
    An X; Artemyev A; Angelopoulos V; Zhang X; Mourenas D; Bortnik J
    Phys Rev Lett; 2022 Sep; 129(13):135101. PubMed ID: 36206419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced acceleration of injected electrons in a laser-beat-wave-induced plasma channel.
    Tochitsky SY; Narang R; Filip CV; Musumeci P; Clayton CE; Yoder RB; Marsh KA; Rosenzweig JB; Pellegrini C; Joshi C
    Phys Rev Lett; 2004 Mar; 92(9):095004. PubMed ID: 15089478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully relativistic form factor for Thomson scattering.
    Palastro JP; Ross JS; Pollock B; Divol L; Froula DH; Glenzer SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036411. PubMed ID: 20365886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron Acceleration by Relativistic Surface Plasmons in Laser-Grating Interaction.
    Fedeli L; Sgattoni A; Cantono G; Garzella D; Réau F; Prencipe I; Passoni M; Raynaud M; Květoň M; Proska J; Macchi A; Ceccotti T
    Phys Rev Lett; 2016 Jan; 116(1):015001. PubMed ID: 26799022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron acceleration by a wake field forced by an intense ultrashort laser pulse.
    Malka V; Fritzler S; Lefebvre E; Aleonard MM; Burgy F; Chambaret JP; Chemin JF; Krushelnick K; Malka G; Mangles SP; Najmudin Z; Pittman M; Rousseau JP; Scheurer JN; Walton B; Dangor AE
    Science; 2002 Nov; 298(5598):1596-600. PubMed ID: 12446903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thomson scattering and ponderomotive intermodulation within standing laser beat waves in plasma.
    Sepke S; Lau YY; Holloway JP; Umstadter D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026501. PubMed ID: 16196727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of laser-wakefield acceleration by the plasma-density profile.
    Pukhov A; Kostyukov I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):025401. PubMed ID: 18352081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient acceleration of electrons with counterpropagating intense laser pulses in vacuum and underdense plasma.
    Sheng ZM; Mima K; Zhang J; Meyer-Ter-Vehn J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016407. PubMed ID: 14995725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant plasma excitation by single-cycle THz pulses.
    Curcio A; Marocchino A; Dolci V; Lupi S; Petrarca M
    Sci Rep; 2018 Jan; 8(1):1052. PubMed ID: 29348511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.