These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 14995570)

  • 1. Charge separation effects in solid targets and ion acceleration with a two-temperature electron distribution.
    Passoni M; Tikhonchuk VT; Lontano M; Bychenkov VY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026411. PubMed ID: 14995570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric and magnetic field generation and target heating by laser-generated fast electrons.
    Davies JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056404. PubMed ID: 14682891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast ion acceleration in ultraintense laser interactions with an overdense plasma.
    Habara H; Kodama R; Sentoku Y; Izumi N; Kitagawa Y; Tanaka KA; Mima K; Yamanaka T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036407. PubMed ID: 15089415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron energy distribution in a dusty plasma: analytical approach.
    Denysenko IB; Kersten H; Azarenkov NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033102. PubMed ID: 26465570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absorption of femtosecond laser pulses in interaction with solid targets.
    Dong QL; Zhang J; Teng H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026411. PubMed ID: 11497715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wave breaking field of relativistically intense electrostatic waves in electronegative plasma with super-thermal electrons.
    Mukherjee A
    Sci Rep; 2022 Jul; 12(1):12263. PubMed ID: 35851137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron kinetic effects in plasma expansion and ion acceleration.
    Grismayer T; Mora P; Adam JC; Héron A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066407. PubMed ID: 18643383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical modeling of the electrical breakdown and discharge properties of laser-generated plasma channels.
    Petrova TB; Ladouceur HD; Baronavski AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066405. PubMed ID: 18233930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ponderomotive acceleration of hot electrons in tenuous plasmas.
    Geyko VI; Fraiman GM; Dodin IY; Fisch NJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036404. PubMed ID: 19905227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental measurements of deep directional columnar heating by laser-generated relativistic electrons at near-solid density.
    Koch JA; Key MH; Freeman RR; Hatchett SP; Lee RW; Pennington D; Stephens RB; Tabak M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016410. PubMed ID: 11800793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of strong-laser-field coupling to electrons in solid targets with wavelength-scale spheres.
    Sumeruk HA; Kneip S; Symes DR; Churina IV; Belolipetski AV; Donnelly TD; Ditmire T
    Phys Rev Lett; 2007 Jan; 98(4):045001. PubMed ID: 17358781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.
    Sarkisov GS; Ivanov VV; Leblanc P; Sentoku Y; Yates K; Wiewior P; Chalyy O; Astanovitskiy A; Bychenkov VY; Jobe D; Spielman RB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036412. PubMed ID: 23031038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin-foil expansion into a vacuum with a two-temperature electron distribution function.
    Diaw A; Mora P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026403. PubMed ID: 23005865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target charging in short-pulse-laser-plasma experiments.
    Dubois JL; Lubrano-Lavaderci F; Raffestin D; Ribolzi J; Gazave J; Compant La Fontaine A; d'Humières E; Hulin S; Nicolaï P; Poyé A; Tikhonchuk VT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013102. PubMed ID: 24580341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of ion acceleration in the interaction of intense femtosecond laser pulses with ultrathin foils.
    Dong QL; Sheng ZM; Yu MY; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026408. PubMed ID: 14525121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of light-ion acceleration driven by a strong charge separation.
    Passoni M; Lontano M
    Phys Rev Lett; 2008 Sep; 101(11):115001. PubMed ID: 18851288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly charged ions from laser-cluster interactions: local-field-enhanced impact ionization and frustrated electron-ion recombination.
    Fennel T; Ramunno L; Brabec T
    Phys Rev Lett; 2007 Dec; 99(23):233401. PubMed ID: 18233362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of generating fast electrons by an intense laser at a steep overdense interface.
    May J; Tonge J; Fiuza F; Fonseca RA; Silva LO; Ren C; Mori WB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):025401. PubMed ID: 21929052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron heating in subpicosecond laser interaction with overdense and near-critical plasmas.
    Cialfi L; Fedeli L; Passoni M
    Phys Rev E; 2016 Nov; 94(5-1):053201. PubMed ID: 27967191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient acceleration of electrons with counterpropagating intense laser pulses in vacuum and underdense plasma.
    Sheng ZM; Mima K; Zhang J; Meyer-Ter-Vehn J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016407. PubMed ID: 14995725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.