These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 14995662)
1. Dilatation symmetry of the Fokker-Planck equation and anomalous diffusion. Abe S Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016102. PubMed ID: 14995662 [TBL] [Abstract][Full Text] [Related]
2. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy. Shizgal BD Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998 [TBL] [Abstract][Full Text] [Related]
4. Relaxation of the distribution function tails for systems described by Fokker-Planck equations. Chavanis PH; Lemou M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061106. PubMed ID: 16485930 [TBL] [Abstract][Full Text] [Related]
5. Consequences of the H theorem from nonlinear Fokker-Planck equations. Schwämmle V; Nobre FD; Curado EM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952 [TBL] [Abstract][Full Text] [Related]
6. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle. Kaniadakis G; Hristopulos DT Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265516 [TBL] [Abstract][Full Text] [Related]
7. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system. Shiino M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231 [TBL] [Abstract][Full Text] [Related]
8. Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Lévy Stable Processes. Anderson J; Moradi S; Rafiq T Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265849 [TBL] [Abstract][Full Text] [Related]
9. Generalized diffusion: a microscopic approach. Lutsko JF; Boon JP Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051103. PubMed ID: 18643022 [TBL] [Abstract][Full Text] [Related]
10. The Fokker-Planck equation of the superstatistical fractional Brownian motion with application to passive tracers inside cytoplasm. Runfola C; Vitali S; Pagnini G R Soc Open Sci; 2022 Nov; 9(11):221141. PubMed ID: 36340511 [TBL] [Abstract][Full Text] [Related]
11. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions. Banik SK; Bag BC; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear anomalous diffusion equation and fractal dimension: exact generalized Gaussian solution. Pedron IT; Mendes RS; Malacarne LC; Lenzi EK Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041108. PubMed ID: 12005807 [TBL] [Abstract][Full Text] [Related]
13. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles. Lukassen LJ; Oberlack M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777 [TBL] [Abstract][Full Text] [Related]
14. N-dimensional nonlinear Fokker-Planck equation with time-dependent coefficients. Malacarne LC; Mendes RS; Pedron IT; Lenzi EK Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):052101. PubMed ID: 12059613 [TBL] [Abstract][Full Text] [Related]
15. Analytic description of anomalous diffusion in heterogeneous environments: Fokker-Planck equation without fractional derivatives. Likhomanova P; Kalashnikov I Phys Rev E; 2020 Aug; 102(2-1):022108. PubMed ID: 32942441 [TBL] [Abstract][Full Text] [Related]
17. Wigner function approach to the quantum Brownian motion of a particle in a potential. Coffey WT; Kalmykov YP; Titov SV; Mulligan BP Phys Chem Chem Phys; 2007 Jul; 9(26):3361-82. PubMed ID: 17664961 [TBL] [Abstract][Full Text] [Related]
18. Fokker-Planck equation in a wedge domain: anomalous diffusion and survival probability. Lenzi EK; Evangelista LR; Lenzi MK; da Silva LR Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021131. PubMed ID: 19792101 [TBL] [Abstract][Full Text] [Related]
19. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Grima R; Thomas P; Straube AV J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155 [TBL] [Abstract][Full Text] [Related]
20. Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence. Chavanis PH Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036108. PubMed ID: 14524833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]