These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 14995699)

  • 1. Statistics of shadowing time in nonhyperbolic chaotic systems with unstable dimension variability.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016213. PubMed ID: 14995699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal and nonuniversal features in shadowing dynamics of nonhyperbolic chaotic systems with unstable-dimension variability.
    Do Y; Lai YC; Liu Z; Kostelich EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):035202. PubMed ID: 12689122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaotic bursting at the onset of unstable dimension variability.
    Viana RL; Pinto SE; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046213. PubMed ID: 12443305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for measuring unstable dimension variability from time series.
    McCullen NJ; Moresco P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046203. PubMed ID: 16711913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unstable dimension variability in coupled chaotic systems.
    Lai YC; Lerner D; Williams K; Grebogi C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5445-54. PubMed ID: 11970417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors.
    Kantz H; Grebogi C; Prasad A; Lai YC; Sinde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026209. PubMed ID: 11863634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity of numerical trajectories in the synchronization transition of complex systems.
    Viana RL; Grebogi C; Pinto SE; Lopes SR; Batista AM; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):067204. PubMed ID: 14754359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for the development of unstable dimension variability and the breakdown of shadowing in coupled chaotic systems.
    Barreto E; So P
    Phys Rev Lett; 2000 Sep; 85(12):2490-3. PubMed ID: 10978089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Riddled basins of chaotic synchronization and unstable dimension variability in coupled Lorenz-like systems.
    Czajkowski BM; Viana RL
    Chaos; 2024 Sep; 34(9):. PubMed ID: 39240693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation.
    Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C
    Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast high-quality numerical shadowing of chaotic maps using synchronization.
    Dutta M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056214. PubMed ID: 16383734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unstable dimension variability and synchronization of chaotic systems.
    Viana RL; Grebogi C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):462-8. PubMed ID: 11088481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shadowing breakdown and large errors in dynamical simulations of physical systems.
    Sauer TD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036220. PubMed ID: 11909225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles.
    Dhamala M; Lai YC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):6176-9. PubMed ID: 11970527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dephasing representation: Employing the shadowing theorem to calculate quantum correlation functions.
    Vanícek J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):055201. PubMed ID: 15600677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basin topology in dissipative chaotic scattering.
    Seoane JM; Aguirre J; Sanjuán MA; Lai YC
    Chaos; 2006 Jun; 16(2):023101. PubMed ID: 16822004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrence-time statistics in non-Hamiltonian volume-preserving maps and flows.
    da Silva RM; Beims MW; Manchein C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022921. PubMed ID: 26382489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cusp-scaling behavior in fractal dimension of chaotic scattering.
    Motter AE; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):065201. PubMed ID: 12188774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyses of transient chaotic time series.
    Dhamala M; Lai YC; Kostelich EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056207. PubMed ID: 11736054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.