These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 14995790)

  • 1. Self-poisoning of crystal nuclei in hard-rod liquids.
    Schilling T; Frenkel D
    Phys Rev Lett; 2004 Feb; 92(8):085505. PubMed ID: 14995790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do multilayer crystals nucleate in suspensions of colloidal rods?
    Patti A; Dijkstra M
    Phys Rev Lett; 2009 Mar; 102(12):128301. PubMed ID: 19392328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal nucleation of colloidal hard dumbbells.
    Ni R; Dijkstra M
    J Chem Phys; 2011 Jan; 134(3):034501. PubMed ID: 21261362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular Crystal Nucleation Favored by Polymer Crystallization: Monte Carlo Simulation Evidence.
    Zhang R; Zha L; Hu W
    J Phys Chem B; 2016 Jul; 120(27):6754-60. PubMed ID: 27300471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Onset of heterogeneous crystal nucleation in colloidal suspensions.
    Cacciuto A; Auer S; Frenkel D
    Nature; 2004 Mar; 428(6981):404-6. PubMed ID: 15042084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isotropic-to-nematic nucleation in suspensions of colloidal rods.
    Cuetos A; van Roij R; Dijkstra M
    Soft Matter; 2008 Mar; 4(4):757-767. PubMed ID: 32907181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low density mesostructures of confined dipolar particles in an external field.
    Richardi J; Weis JJ
    J Chem Phys; 2011 Sep; 135(12):124502. PubMed ID: 21974530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Ideal glassformers" vs "ideal glasses": studies of crystal-free routes to the glassy state by "potential tuning" molecular dynamics, and laboratory calorimetry.
    Kapko V; Zhao Z; Matyushov DV; Austen Angell C
    J Chem Phys; 2013 Mar; 138(12):12A549. PubMed ID: 23556800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation and polymorph selection in a model colloidal fluid.
    Browning AR; Doherty MF; Fredrickson GH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041604. PubMed ID: 18517632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase behaviour of polarizable colloidal hard rods in an external electric field: a simulation study.
    Troppenz T; Filion L; van Roij R; Dijkstra M
    J Chem Phys; 2014 Oct; 141(15):154903. PubMed ID: 25338909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile simulation method for studying phase behavior and dynamics in colloidal rod and rod-polymer suspensions.
    Liu Y; Widmer-Cooper A
    J Chem Phys; 2019 Jun; 150(24):244508. PubMed ID: 31255071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple monoclinic crystal phase in suspensions of hard ellipsoids.
    Pfleiderer P; Schilling T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):020402. PubMed ID: 17358304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal nucleation in colloidal rod suspensions: The effect of depletant size.
    Wood JA; Liu Y; Widmer-Cooper A
    J Chem Phys; 2021 Jun; 154(24):244505. PubMed ID: 34241344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smectic filaments in colloidal suspensions of rods.
    Frenkel D; Schilling T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041606. PubMed ID: 12443215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic pathways for the isotropic-nematic phase transition in a system of colloidal hard rods: a simulation study.
    Cuetos A; Dijkstra M
    Phys Rev Lett; 2007 Mar; 98(9):095701. PubMed ID: 17359170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous nucleation and crystal growth on curved surfaces observed by real-space imaging.
    Ziese F; Maret G; Gasser U
    J Phys Condens Matter; 2013 Sep; 25(37):375105. PubMed ID: 23963437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glassy dynamics, spinodal fluctuations, and the kinetic limit of nucleation in suspensions of colloidal hard rods.
    Ni R; Belli S; van Roij R; Dijkstra M
    Phys Rev Lett; 2010 Aug; 105(8):088302. PubMed ID: 20868134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal-structure prediction via the floppy-box Monte Carlo algorithm: method and application to hard (non)convex particles.
    de Graaf J; Filion L; Marechal M; van Roij R; Dijkstra M
    J Chem Phys; 2012 Dec; 137(21):214101. PubMed ID: 23231211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy.
    Auer S; Frenkel D
    Nature; 2001 Oct; 413(6857):711-3. PubMed ID: 11607025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal nucleation in sedimenting colloidal suspensions.
    Ketzetzi S; Russo J; Bonn D
    J Chem Phys; 2018 Feb; 148(6):064901. PubMed ID: 29448767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.