These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Effect of resonant-frequency mismatch on attractors. Wang X; Lai YC; Lai CH Chaos; 2006 Jun; 16(2):023127. PubMed ID: 16822030 [TBL] [Abstract][Full Text] [Related]
23. Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency. Uenohara S; Mitsui T; Hirata Y; Morie T; Horio Y; Aihara K Chaos; 2013 Jun; 23(2):023110. PubMed ID: 23822475 [TBL] [Abstract][Full Text] [Related]
24. A lot of strange attractors: chaotic or not? Badard R Chaos; 2008 Jun; 18(2):023127. PubMed ID: 18601494 [TBL] [Abstract][Full Text] [Related]
25. Fractalization route to strange nonchaotic dynamics. Datta S; Ramaswamy R; Prasad A Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046203. PubMed ID: 15600491 [TBL] [Abstract][Full Text] [Related]
27. Subdiffusion due to strange nonchaotic dynamics: a numerical study. Mitsui T Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066212. PubMed ID: 21797466 [TBL] [Abstract][Full Text] [Related]
28. Effects of quasiperiodic forcing in epidemic models. Bilal S; Singh BK; Prasad A; Michael E Chaos; 2016 Sep; 26(9):093115. PubMed ID: 27781468 [TBL] [Abstract][Full Text] [Related]
29. Scenarios for generalized synchronization with chaotic driving. Singh TU; Nandi A; Ramaswamy R Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):025205. PubMed ID: 18850884 [TBL] [Abstract][Full Text] [Related]
30. Nature of weak generalized synchronization in chaotically driven maps. Keller G; Jafri HH; Ramaswamy R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042913. PubMed ID: 23679495 [TBL] [Abstract][Full Text] [Related]
31. Coexisting attractors in periodically modulated logistic maps. Singh TU; Nandi A; Ramaswamy R Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066217. PubMed ID: 18643360 [TBL] [Abstract][Full Text] [Related]
32. Strange nonchaotic attractors in autonomous and periodically driven systems. Anishchenko VS; Vadivasova TE; Sosnovtseva O Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1996 Oct; 54(4):3231-3234. PubMed ID: 9965465 [No Abstract] [Full Text] [Related]
33. Double grazing bifurcation route in a quasiperiodically driven piecewise linear oscillator. Liu R; Grebogi C; Yue Y Chaos; 2023 Jun; 33(6):. PubMed ID: 37352504 [TBL] [Abstract][Full Text] [Related]
34. Strange nonchaotic repellers. de Moura AP Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036218. PubMed ID: 17930334 [TBL] [Abstract][Full Text] [Related]
35. Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic. Ding M; Grebogi C; Ott E Phys Rev A Gen Phys; 1989 Mar; 39(5):2593-2598. PubMed ID: 9901530 [No Abstract] [Full Text] [Related]
36. Strange nonchaotic attractors in driven excitable systems. Prasad A; Biswal B; Ramaswamy R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):037201. PubMed ID: 14524927 [TBL] [Abstract][Full Text] [Related]
37. Design strategies for the creation of aperiodic nonchaotic attractors. Nandi A; Bhowmick SK; Dana SK; Ramaswamy R Chaos; 2009 Sep; 19(3):033116. PubMed ID: 19791996 [TBL] [Abstract][Full Text] [Related]
38. Experimental observation of dynamics near the torus-doubling terminal critical point. Bezruchko BP; Kuznetsov SP; Seleznev YP Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt A):7828-30. PubMed ID: 11138061 [TBL] [Abstract][Full Text] [Related]
39. Counting and classifying attractors in high dimensional dynamical systems. Bagley RJ; Glass L J Theor Biol; 1996 Dec; 183(3):269-84. PubMed ID: 9015450 [TBL] [Abstract][Full Text] [Related]
40. Cluster-weighted modeling: estimation of the Lyapunov spectrum in driven systems. Ghosh A; Ramaswamy R Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016224. PubMed ID: 15697715 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]