BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1499652)

  • 1. Glibenclamide does not block arterial relaxation caused by vasoactive intestinal polypeptide.
    Hattori Y; Nagashima M; Endo Y; Kanno M
    Eur J Pharmacol; 1992 Mar; 213(1):147-50. PubMed ID: 1499652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of endothelium-dependent vascular smooth muscle relaxation elicited by bradykinin and VIP.
    Ignarro LJ; Byrns RE; Buga GM; Wood KS
    Am J Physiol; 1987 Nov; 253(5 Pt 2):H1074-82. PubMed ID: 2825543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperpolarization and relaxation of canine vascular smooth muscle to vasoactive intestinal polypeptide.
    Nakashima M; Morrison KJ; Vanhoutte PM
    J Cardiovasc Pharmacol; 1997 Sep; 30(3):273-7. PubMed ID: 9300308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of endothelium in relaxant action of glibenclamide on the rat mesenteric artery.
    Huang Y; Chan NW
    Eur J Pharmacol; 1998 Feb; 343(1):27-33. PubMed ID: 9551711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PKA-dependent activation of the vascular smooth muscle isoform of KATP channels by vasoactive intestinal polypeptide and its effect on relaxation of the mesenteric resistance artery.
    Yang Y; Shi Y; Guo S; Zhang S; Cui N; Shi W; Zhu D; Jiang C
    Biochim Biophys Acta; 2008 Jan; 1778(1):88-96. PubMed ID: 17942071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation of sheep cerebral arteries by vasoactive intestinal polypeptide and neurogenic stimulation: inhibition by L-NG-monomethyl arginine in endothelium-denuded vessels.
    Gaw AJ; Aberdeen J; Humphrey PP; Wadsworth RM; Burnstock G
    Br J Pharmacol; 1991 Mar; 102(3):567-72. PubMed ID: 1364820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelium-dependent contraction and direct relaxation induced by baicalein in rat mesenteric artery.
    Chen ZY; Su YL; Lau CW; Law WI; Huang Y
    Eur J Pharmacol; 1999 Jun; 374(1):41-7. PubMed ID: 10422639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predominant role for nitric oxide in the relaxation induced by vasoactive intestinal polypeptide in human uterine artery.
    Jovanović A; Jovanović S; Tulić I; Grbović L
    Mol Hum Reprod; 1998 Jan; 4(1):71-6. PubMed ID: 9510014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of relaxation and repolarization mechanisms of nicorandil in rat mesenteric artery.
    Fujiwara T; Angus JA
    Br J Pharmacol; 1996 Dec; 119(8):1549-56. PubMed ID: 8982500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (-)epicatechin induces and modulates endothelium-dependent relaxation in isolated rat mesenteric artery rings.
    Chen ZY; Yao XQ; Chan FL; Lau CW; Huang Y
    Acta Pharmacol Sin; 2002 Dec; 23(12):1188-92. PubMed ID: 12466059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxant effects of vasoactive intestinal peptide on pulmonary artery in chronically hypoxic rats.
    Chen Y; Luo W; Cai Y
    Chin Med Sci J; 1996 Mar; 11(1):21-4. PubMed ID: 9206113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasorelaxant and antiproliferative effects of berberine.
    Ko WH; Yao XQ; Lau CW; Law WI; Chen ZY; Kwok W; Ho K; Huang Y
    Eur J Pharmacol; 2000 Jul; 399(2-3):187-96. PubMed ID: 10884519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of MaxiK channels in vasoactive intestinal peptide-induced relaxation of rat mesenteric artery.
    Tanaka Y; Mochizuki Y; Hirano H; Aida M; Tanaka H; Toro L; Shigenobu K
    Eur J Pharmacol; 1999 Nov; 383(3):291-6. PubMed ID: 10594322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vasoactive intestinal polypeptide relaxes isolated rat pulmonary artery rings through two distinct mechanisms.
    Zhang S; Liu Y; Guo S; Zhang J; Chu X; Jiang C; Zhu D
    J Physiol Sci; 2010 Nov; 60(6):389-97. PubMed ID: 20694540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vasoactive intestinal polypeptide relaxes pulmonary artery by an endothelium-independent mechanism.
    Sata T; Misra HP; Kubota E; Said SI
    Peptides; 1986; 7 Suppl 1():225-7. PubMed ID: 3748848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of endothelium in the secondary relaxation following contraction by various agonists in isolated rabbit superior mesenteric artery rings.
    Ercan ZS
    Arch Int Pharmacodyn Ther; 1989; 300():107-13. PubMed ID: 2619419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relaxation of isolated bovine coronary arteries by vasoactive intestinal peptide.
    Itoh H; Lederis KP; Rorstad OP
    Eur J Pharmacol; 1990 Jun; 181(3):199-205. PubMed ID: 2384132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of hypoxia-induced relaxation of rabbit isolated coronary arteries by NG-monomethyl-L-arginine but not glibenclamide.
    Jiang C; Collins P
    Br J Pharmacol; 1994 Mar; 111(3):711-6. PubMed ID: 8019749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glibenclamide-sensitive mechanism is involved in helodermin-produced vasodilatation in rat mesenteric artery.
    Tanaka Y; Horikawa N; Ishiro H; Kataha K; Nakazawa T; Watanabe N; Ishii K; Nakayama K; Yanaihara N; Shigenobu K
    Res Commun Mol Pathol Pharmacol; 1997 Nov; 98(2):141-56. PubMed ID: 9467823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.