These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
469 related articles for article (PubMed ID: 14996566)
1. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading. Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566 [TBL] [Abstract][Full Text] [Related]
2. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density. Hsieh YF; Silva MJ J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665 [TBL] [Abstract][Full Text] [Related]
3. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system. Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942 [TBL] [Abstract][Full Text] [Related]
4. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844 [TBL] [Abstract][Full Text] [Related]
5. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life. Silva MJ; Touhey DC J Orthop Res; 2007 Feb; 25(2):252-61. PubMed ID: 17106875 [TBL] [Abstract][Full Text] [Related]
6. [The establishment of a new mechanobiology model of bone and functional adaptation studies in vivo]. Chen XY; Zhang XZ; Zhang YL; Zhang CQ; Zhao HB; Zhang YH; Mao Y Zhonghua Yi Xue Za Zhi; 2007 May; 87(17):1160-4. PubMed ID: 17686232 [TBL] [Abstract][Full Text] [Related]
7. Site specific bone adaptation response to mechanical loading. Kuruvilla SJ; Fox SD; Cullen DM; Akhter MP J Musculoskelet Neuronal Interact; 2008; 8(1):71-8. PubMed ID: 18398268 [TBL] [Abstract][Full Text] [Related]
8. Load/strain distribution between ulna and radius in the mouse forearm compression loading model. Lu Y; Thiagarajan G; Nicolella DP; Johnson ML Med Eng Phys; 2012 Apr; 34(3):350-6. PubMed ID: 21903442 [TBL] [Abstract][Full Text] [Related]
9. The establishment of a mechanobiology model of bone and functional adaptation in response to mechanical loading. Chen XY; Zhang XZ; Guo Y; Li RX; Lin JJ; Wei Y Clin Biomech (Bristol); 2008; 23 Suppl 1():S88-95. PubMed ID: 18448217 [TBL] [Abstract][Full Text] [Related]
10. Strain gradients correlate with sites of periosteal bone formation. Gross TS; Edwards JL; McLeod KJ; Rubin CT J Bone Miner Res; 1997 Jun; 12(6):982-8. PubMed ID: 9169359 [TBL] [Abstract][Full Text] [Related]
11. Finite-element analysis of the mouse proximal ulna in response to elbow loading. Jiang F; Jalali A; Deguchi C; Chen A; Liu S; Kondo R; Minami K; Horiuchi T; Li BY; Robling AG; Chen J; Yokota H J Bone Miner Metab; 2019 May; 37(3):419-429. PubMed ID: 30062431 [TBL] [Abstract][Full Text] [Related]
12. Use of the rat forelimb compression model to create discrete levels of bone damage in vivo. Uthgenannt BA; Silva MJ J Biomech; 2007; 40(2):317-24. PubMed ID: 16519891 [TBL] [Abstract][Full Text] [Related]
13. In vivo static creep loading of the rat forelimb reduces ulnar structural properties at time-zero and induces damage-dependent woven bone formation. Lynch JA; Silva MJ Bone; 2008 May; 42(5):942-9. PubMed ID: 18295561 [TBL] [Abstract][Full Text] [Related]
15. The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-beta. Saxon LK; Robling AG; Castillo AB; Mohan S; Turner CH Am J Physiol Endocrinol Metab; 2007 Aug; 293(2):E484-91. PubMed ID: 17535856 [TBL] [Abstract][Full Text] [Related]
16. Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation. Hsieh YF; Wang T; Turner CH Bone; 1999 Sep; 25(3):379-82. PubMed ID: 10495144 [TBL] [Abstract][Full Text] [Related]
17. A novel in vivo mouse model for mechanically stimulated bone adaptation--a combined experimental and computational validation study. Webster DJ; Morley PL; van Lenthe GH; Müller R Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):435-41. PubMed ID: 18612871 [TBL] [Abstract][Full Text] [Related]
18. Finite element analysis of the mouse tibia: estimating endocortical strain during three-point bending in SAMP6 osteoporotic mice. Silva MJ; Brodt MD; Hucker WJ Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):380-90. PubMed ID: 15747345 [TBL] [Abstract][Full Text] [Related]
19. Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading. Hankenson KD; Ausk BJ; Bain SD; Bornstein P; Gross TS; Srinivasan S Bone; 2006 Mar; 38(3):310-6. PubMed ID: 16290255 [TBL] [Abstract][Full Text] [Related]
20. Effects of loading frequency on mechanically induced bone formation. Hsieh YF; Turner CH J Bone Miner Res; 2001 May; 16(5):918-24. PubMed ID: 11341337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]