These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 14996670)
1. Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Segawa H; Kaneko I; Yamanaka S; Ito M; Kuwahata M; Inoue Y; Kato S; Miyamoto K Am J Physiol Renal Physiol; 2004 Jul; 287(1):F39-47. PubMed ID: 14996670 [TBL] [Abstract][Full Text] [Related]
2. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Katai K; Miyamoto K; Kishida S; Segawa H; Nii T; Tanaka H; Tani Y; Arai H; Tatsumi S; Morita K; Taketani Y; Takeda E Biochem J; 1999 Nov; 343 Pt 3(Pt 3):705-12. PubMed ID: 10527952 [TBL] [Abstract][Full Text] [Related]
3. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na(+)-P(i) cotransporter in mouse small intestine. Radanovic T; Wagner CA; Murer H; Biber J Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G496-500. PubMed ID: 15701623 [TBL] [Abstract][Full Text] [Related]
4. Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Segawa H; Yamanaka S; Ito M; Kuwahata M; Shono M; Yamamoto T; Miyamoto K Am J Physiol Renal Physiol; 2005 Mar; 288(3):F587-96. PubMed ID: 15561978 [TBL] [Abstract][Full Text] [Related]
5. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Shimada T; Yamazaki Y; Takahashi M; Hasegawa H; Urakawa I; Oshima T; Ono K; Kakitani M; Tomizuka K; Fujita T; Fukumoto S; Yamashita T Am J Physiol Renal Physiol; 2005 Nov; 289(5):F1088-95. PubMed ID: 15998839 [TBL] [Abstract][Full Text] [Related]
6. Ex vivo intestinal studies on calcium and phosphate transport in growing goats fed a reduced nitrogen diet. Muscher AS; Wilkens MR; Mrochen N; Schröder B; Breves G; Huber K Br J Nutr; 2012 Aug; 108(4):628-37. PubMed ID: 22172141 [TBL] [Abstract][Full Text] [Related]
7. Vitamin D and type II sodium-dependent phosphate cotransporters. Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552 [TBL] [Abstract][Full Text] [Related]
8. Effects of Npt2 gene ablation and low-phosphate diet on renal Na(+)/phosphate cotransport and cotransporter gene expression. Hoag HM; Martel J; Gauthier C; Tenenhouse HS J Clin Invest; 1999 Sep; 104(6):679-86. PubMed ID: 10491403 [TBL] [Abstract][Full Text] [Related]
9. Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulates Na(+)-dependent phosphate absorption and expression of the Na(+)-P(i) cotransporter NaPi-IIb in small intestine. Stauber A; Radanovic T; Stange G; Murer H; Wagner CA; Biber J Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G501-6. PubMed ID: 15701624 [TBL] [Abstract][Full Text] [Related]
11. Critical role of vitamin D in sulfate homeostasis: regulation of the sodium-sulfate cotransporter by 1,25-dihydroxyvitamin D3. Bolt MJ; Liu W; Qiao G; Kong J; Zheng W; Krausz T; Cs-Szabo G; Sitrin MD; Li YC Am J Physiol Endocrinol Metab; 2004 Oct; 287(4):E744-9. PubMed ID: 15165995 [TBL] [Abstract][Full Text] [Related]
12. Effect of ischemia-reperfusion on the renal brush-border membrane sodium-dependent phosphate cotransporter NaPi-2. Xiao Y; Desrosiers RR; Beliveau R Can J Physiol Pharmacol; 2001 Mar; 79(3):206-12. PubMed ID: 11294596 [TBL] [Abstract][Full Text] [Related]
13. Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-P(i) cotransporter during ontogeny. Arima K; Hines ER; Kiela PR; Drees JB; Collins JF; Ghishan FK Am J Physiol Gastrointest Liver Physiol; 2002 Aug; 283(2):G426-34. PubMed ID: 12121891 [TBL] [Abstract][Full Text] [Related]
14. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. Masuyama R; Stockmans I; Torrekens S; Van Looveren R; Maes C; Carmeliet P; Bouillon R; Carmeliet G J Clin Invest; 2006 Dec; 116(12):3150-9. PubMed ID: 17099775 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of intestinal sodium-dependent inorganic phosphate transport by fibroblast growth factor 23. Miyamoto K; Ito M; Kuwahata M; Kato S; Segawa H Ther Apher Dial; 2005 Aug; 9(4):331-5. PubMed ID: 16076377 [TBL] [Abstract][Full Text] [Related]
16. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice. Tomoe Y; Segawa H; Shiozawa K; Kaneko I; Tominaga R; Hanabusa E; Aranami F; Furutani J; Kuwahara S; Tatsumi S; Matsumoto M; Ito M; Miyamoto K Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1341-50. PubMed ID: 20357029 [TBL] [Abstract][Full Text] [Related]
17. Role of microtubules in the rapid regulation of renal phosphate transport in response to acute alterations in dietary phosphate content. Lötscher M; Kaissling B; Biber J; Murer H; Levi M J Clin Invest; 1997 Mar; 99(6):1302-12. PubMed ID: 9077540 [TBL] [Abstract][Full Text] [Related]
18. Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1alphaOHase-deficient mice. Capuano P; Radanovic T; Wagner CA; Bacic D; Kato S; Uchiyama Y; St-Arnoud R; Murer H; Biber J Am J Physiol Cell Physiol; 2005 Feb; 288(2):C429-34. PubMed ID: 15643054 [TBL] [Abstract][Full Text] [Related]
19. NHERF-1 is required for renal adaptation to a low-phosphate diet. Weinman EJ; Boddeti A; Cunningham R; Akom M; Wang F; Wang Y; Liu J; Steplock D; Shenolikar S; Wade JB Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1225-32. PubMed ID: 12952857 [TBL] [Abstract][Full Text] [Related]
20. Modulation of apical Na+/Pi cotransporter type IIb expression in epithelial cells of goat mammary glands. Muscher A; Breves G; Huber K J Anim Physiol Anim Nutr (Berl); 2009 Aug; 93(4):477-85. PubMed ID: 18492032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]