These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 14997366)

  • 1. Decomposition mechanism of 3-N-morpholinosydnonimine (SIN-1)--a density functional study on intrinsic structures and reactivities.
    Rojas Wahl RU
    J Mol Model; 2004 Apr; 10(2):121-9. PubMed ID: 14997366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of antioxidants on induction time of luminol luminescence elicited by 3-morpholinosydnonimine (SIN-1).
    Pascual C; Reinhart K
    Luminescence; 1999; 14(2):83-9. PubMed ID: 10398565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of *NO2 with chromium(III) complexes with histamine and pyridoxamine ligands studied by the stopped-flow technique.
    Jacewicz D; Lapińska A; Dabrowska A; Figarski A; Woźniak M; Chmurzyński L
    Anal Biochem; 2006 Mar; 350(2):256-62. PubMed ID: 16430847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical investigation on radical anion promoted electrocyclization in photochromes.
    Bibi N; Kosar N; Ayub K; Mahmood T
    J Mol Graph Model; 2020 Jun; 97():107550. PubMed ID: 32023507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative kinetics of thiol oxidation in two distinct free-radical generating systems: SIN-1 versus AAPH.
    Ho SC; Chiu SJ; Hu TM
    Free Radic Res; 2012 Oct; 46(10):1190-200. PubMed ID: 22656049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-trapping studies of peroxynitrite decomposition and of 3-morpholinosydnonimine N-ethylcarbamide autooxidation: direct evidence for metal-independent formation of free radical intermediates.
    Augusto O; Gatti RM; Radi R
    Arch Biochem Biophys; 1994 Apr; 310(1):118-25. PubMed ID: 8161194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liver function and pharmacokinetics of molsidomine and its metabolite 3-morpholinosydnonimine in healthy volunteers.
    Wildgrube HJ; Ostrowski J; Chamberlain J; Gärtner W; Stockhausen H
    Arzneimittelforschung; 1986 Jul; 36(7):1129-33. PubMed ID: 3768083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of the effects of molsidomine and 3-morpholinosydnonimine on the redox status of rat erythrocytes and reticulocytes.
    Marković SD; Vukajlović MDj; Ognjanović BI; Stajn AS; Zikić RV; Saicić ZS; Radojicić RM; Jones DR; Spasić MB
    Cell Biochem Funct; 2007; 25(3):251-8. PubMed ID: 16397909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation and antioxidation of human low-density lipoprotein and plasma exposed to 3-morpholinosydnonimine and reagent peroxynitrite.
    Thomas SR; Davies MJ; Stocker R
    Chem Res Toxicol; 1998 May; 11(5):484-94. PubMed ID: 9585479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction mechanism of naphthyl radicals with molecular oxygen. 1. Theoretical study of the potential energy surface.
    Zhou CW; Kislov VV; Mebel AM
    J Phys Chem A; 2012 Feb; 116(6):1571-85. PubMed ID: 22239650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen generation from methylamine using silicon carbide nanotubes as a dehydrogenation catalyst: a density functional theory study.
    Esrafili MD; Nurazar R
    J Mol Graph Model; 2015 Feb; 55():41-7. PubMed ID: 25424658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the nitric oxide donor 3-morpholinosydnonimine (SIN-1) in focal cerebral ischemia dependent on intracellular brain pH.
    Coert BA; Anderson RE; Meyer FB
    J Neurosurg; 2002 Oct; 97(4):914-21. PubMed ID: 12405381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroprotective effect of 3-morpholinosydnonimine against Zn²⁺-induced PC12 cell death.
    An JM; Moon SA; Hong SY; Kang JW; Seo JT
    Eur J Pharmacol; 2015 Feb; 748():37-44. PubMed ID: 25523480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.
    Wang Q; Wei C; Pérez LM; Rogers WJ; Hall MB; Mannan MS
    J Phys Chem A; 2010 Sep; 114(34):9262-9. PubMed ID: 20677777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of novel antioxidant triterpenoid saponins from the halophyte Salicornia herbacea.
    Kim YA; Kong CS; Lee JI; Kim H; Park HY; Lee HS; Lee C; Seo Y
    Bioorg Med Chem Lett; 2012 Jul; 22(13):4318-22. PubMed ID: 22652051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical assessment of norfloxacin redox and photochemistry.
    Musa KA; Eriksson LA
    J Phys Chem A; 2009 Oct; 113(40):10803-10. PubMed ID: 19746947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallothionein attenuates 3-morpholinosydnonimine (SIN-1)-induced oxidative stress in dopaminergic neurons.
    Sharma SK; Ebadi M
    Antioxid Redox Signal; 2003 Jun; 5(3):251-64. PubMed ID: 12880480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New approach to molsidomine active metabolites coming from the results of 2 models of experimental cardiology.
    Żorniak M; Mitręga KA; Porc M; Krzemiński TF
    Can J Physiol Pharmacol; 2017 Feb; 95(2):111-121. PubMed ID: 27918857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.