These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 14997522)

  • 1. Structural models of the photointermediates in the rhodopsin photocascade, lumirhodopsin, metarhodopsin I, and metarhodopsin II.
    Ishiguro M; Oyama Y; Hirano T
    Chembiochem; 2004 Mar; 5(3):298-310. PubMed ID: 14997522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation analysis of glu181 and ser186 in the metarhodopsin I state.
    Ishiguro M
    Chembiochem; 2004 Sep; 5(9):1204-9. PubMed ID: 15368571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin.
    Nishimura S; Kandori H; Nakagawa M; Tsuda M; Maeda A
    Biochemistry; 1997 Jan; 36(4):864-70. PubMed ID: 9020785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural changes in the lumirhodopsin-to-metarhodopsin I conversion of air-dried bovine rhodopsin.
    Nishimura S; Sasaki J; Kandori H; Lugtenburg J; Maeda A
    Biochemistry; 1995 Dec; 34(51):16758-63. PubMed ID: 8527450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural changes in lumirhodopsin and metarhodopsin I studied by their photoreactions at 77 K.
    Furutani Y; Kandori H; Shichida Y
    Biochemistry; 2003 Jul; 42(28):8494-500. PubMed ID: 12859195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy.
    Pan D; Mathies RA
    Biochemistry; 2001 Jul; 40(26):7929-36. PubMed ID: 11425321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water structural changes in lumirhodopsin, metarhodopsin I, and metarhodopsin II upon photolysis of bovine rhodopsin: analysis by Fourier transform infrared spectroscopy.
    Maeda A; Ohkita YJ; Sasaki J; Shichida Y; Yoshizawa T
    Biochemistry; 1993 Nov; 32(45):12033-8. PubMed ID: 8218280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in structure of the chromophore in the photochemical process of bovine rhodopsin as revealed by FTIR spectroscopy for hydrogen out-of-plane vibrations.
    Ohkita YJ; Sasaki J; Maeda A; Yoshizawa T; Groesbeek M; Verdegem P; Lugtenburg J
    Biophys Chem; 1995; 56(1-2):71-8. PubMed ID: 7662871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved photointermediate changes in rhodopsin glutamic acid 181 mutants.
    Lewis JW; Szundi I; Kazmi MA; Sakmar TP; Kliger DS
    Biochemistry; 2004 Oct; 43(39):12614-21. PubMed ID: 15449951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes in the peptide backbone in complex formation between activated rhodopsin and transducin studied by FTIR spectroscopy.
    Nishimura S; Sasaki J; Kandori H; Matsuda T; Fukada Y; Maeda A
    Biochemistry; 1996 Oct; 35(41):13267-71. PubMed ID: 8873590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of temperature on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II.
    Thorgeirsson TE; Lewis JW; Wallace-Williams SE; Kliger DS
    Biochemistry; 1993 Dec; 32(50):13861-72. PubMed ID: 8268161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraviolet resonance Raman examination of the light-induced protein structural changes in rhodopsin activation.
    Kochendoerfer GG; Kaminaka S; Mathies RA
    Biochemistry; 1997 Oct; 36(43):13153-9. PubMed ID: 9376376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational similarities in the beta-ionone ring region of the rhodopsin chromophore in its ground state and after photoactivation to the metarhodopsin-I intermediate.
    Spooner PJ; Sharples JM; Goodall SC; Seedorf H; Verhoeven MA; Lugtenburg J; Bovee-Geurts PH; DeGrip WJ; Watts A
    Biochemistry; 2003 Nov; 42(46):13371-8. PubMed ID: 14621981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.
    Ritter E; Zimmermann K; Heck M; Hofmann KP; Bartl FJ
    J Biol Chem; 2004 Nov; 279(46):48102-11. PubMed ID: 15322129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin.
    Crocker E; Eilers M; Ahuja S; Hornak V; Hirshfeld A; Sheves M; Smith SO
    J Mol Biol; 2006 Mar; 357(1):163-72. PubMed ID: 16414074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin.
    Furutani Y; Shichida Y; Kandori H
    Biochemistry; 2003 Aug; 42(32):9619-25. PubMed ID: 12911303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two intermediates appear on the lumirhodopsin time scale after rhodopsin photoexcitation.
    Szundi I; Lewis JW; Kliger DS
    Biochemistry; 2003 May; 42(17):5091-8. PubMed ID: 12718552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II.
    Doukas AG; Aton B; Callender RH; Ebrey TG
    Biochemistry; 1978 Jun; 17(12):2430-5. PubMed ID: 678522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsecond time-resolved circular dichroism of rhodopsin photointermediates.
    Thomas YG; Szundi I; Lewis JW; Kliger DS
    Biochemistry; 2009 Dec; 48(51):12283-9. PubMed ID: 19905009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraviolet resonance Raman evidence for the absence of tyrosinate in octopus rhodopsin and the participation of Trp residues in the transition to acid metarhodopsin.
    Hashimoto S; Takeuchi H; Nakagawa M; Tsuda M
    FEBS Lett; 1996 Dec; 398(2-3):239-42. PubMed ID: 8977115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.