BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 14998037)

  • 21. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters.
    Hamdaoui O; Naffrechoux E
    J Hazard Mater; 2007 Aug; 147(1-2):381-94. PubMed ID: 17276594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defluoridation of wastewaters using waste carbon slurry.
    Gupta VK; Ali I; Saini VK
    Water Res; 2007 Aug; 41(15):3307-16. PubMed ID: 17583767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals.
    Ahmaruzzaman M
    Adv Colloid Interface Sci; 2011 Aug; 166(1-2):36-59. PubMed ID: 21669401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material.
    Singh KP; Malik A; Sinha S; Ojha P
    J Hazard Mater; 2008 Feb; 150(3):626-41. PubMed ID: 17582681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sorption of chlorophenols from aqueous solution by granular activated carbon, filter coal, pine and hardwood.
    Hossain GS; McLaughlan RG
    Environ Technol; 2012 Sep; 33(16-18):1839-46. PubMed ID: 23240177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multifunctional polysaccharide structure as green adsorbent for efficient removal and preconcentration of chlorophenols from the aqueous medium: experimental and modeling approaches.
    Ferrah N; Merghache D; Chabane M; Derdour A; Mansour R; Nouri T; Cheikh SA; Zerriahen EH
    Environ Sci Pollut Res Int; 2023 Sep; 30(41):93531-93545. PubMed ID: 37507560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of carbonaceous adsorbent from straw and its adsorption performance for H
    Li L; Li F
    J Air Waste Manag Assoc; 2020 Jun; 70(6):649-656. PubMed ID: 32275197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.
    Zhang S; Shao T; Kose HS; Karanfil T
    Environ Sci Technol; 2010 Aug; 44(16):6377-83. PubMed ID: 20704238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents.
    Gupta VK; Ali I; Suhas ; Mohan D
    J Colloid Interface Sci; 2003 Sep; 265(2):257-64. PubMed ID: 12962659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption of chlorophenols on activated pine sawdust-activated carbon from solution in batch mode.
    Song Y; Wang Y; Han R
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):31294-31308. PubMed ID: 36445525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation, characterization, and dye removal study of activated carbon prepared from palm kernel shell.
    García JR; Sedran U; Zaini MAA; Zakaria ZA
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5076-5085. PubMed ID: 28391459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption of phenol and o-chlorophenol by mesoporous MCM-41.
    Mangrulkar PA; Kamble SP; Meshram J; Rayalu SS
    J Hazard Mater; 2008 Dec; 160(2-3):414-21. PubMed ID: 18524474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of 2-chlorophenol from water using rice-straw derived ash.
    Chang RR; Wang SL; Tzou YM; Chen YM; Wang MK
    J Environ Sci Health B; 2011; 46(2):128-36. PubMed ID: 21328121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrate removal from aqueous solution by adsorption onto various materials.
    Oztürk N; Bektaş TE
    J Hazard Mater; 2004 Aug; 112(1-2):155-62. PubMed ID: 15225942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of chlorophenols from aquatic systems using the dried and dead fungus Pleurotus sajor caju.
    Denizli A; Cihangir N; Tüzmen N; Alsancak G
    Bioresour Technol; 2005 Jan; 96(1):59-62. PubMed ID: 15364081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Steel wastes as versatile materials for treatment of biorefractory wastewaters.
    Dos Santos SV; Amorim CC; Andrade LN; Calixto NC; Henriques AB; Ardisson JD; Leão MM
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):882-93. PubMed ID: 25196961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Adsorption characteristics of phenol compounds in water by activated carbon fiber].
    Yue QY; Yang J; Gao BY; Li RB; Li Y; Yu H
    Huan Jing Ke Xue; 2008 Oct; 29(10):2862-7. PubMed ID: 19143386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite.
    Kuleyin A
    J Hazard Mater; 2007 Jun; 144(1-2):307-15. PubMed ID: 17112660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Porogen effect on characteristics of banana pith carbon and the sorption of dichlorophenols.
    Sathishkumar M; Vijayaraghavan K; Binupriya AR; Stephan AM; Choi JG; Yun SE
    J Colloid Interface Sci; 2008 Apr; 320(1):22-9. PubMed ID: 18221943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part II. Models with more than two parameters.
    Hamdaoui O; Naffrechoux E
    J Hazard Mater; 2007 Aug; 147(1-2):401-11. PubMed ID: 17289259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.