These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 14998037)

  • 41. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part II. Models with more than two parameters.
    Hamdaoui O; Naffrechoux E
    J Hazard Mater; 2007 Aug; 147(1-2):401-11. PubMed ID: 17289259
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal of phenol and chlorophenols from water with reusable dye-affinity hollow fibers.
    Senel S; Kara A; Alsancak G; Denizli A
    J Hazard Mater; 2006 Nov; 138(2):317-24. PubMed ID: 17018244
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation and characterization of new low cost adsorbent beads based on activated bentonite encapsulated with calcium alginate for removal of 2,4-dichlorophenol from aqueous medium.
    Garmia D; Zaghouane-Boudiaf H; Ibbora CV
    Int J Biol Macromol; 2018 Aug; 115():257-265. PubMed ID: 29655888
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal of atrazine from water by low cost adsorbents derived from agricultural and industrial wastes.
    Sharma RK; Kumar A; Joseph PE
    Bull Environ Contam Toxicol; 2008 May; 80(5):461-4. PubMed ID: 18357400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient removal of priority, hazardous priority and emerging pollutants with Prunus armeniaca functionalized biochar from aqueous wastes: Experimental optimization and modeling.
    Turk Sekulić M; Pap S; Stojanović Z; Bošković N; Radonić J; Šolević Knudsen T
    Sci Total Environ; 2018 Feb; 613-614():736-750. PubMed ID: 28938216
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of fluoride by thermally activated carbon prepared from neem (Azadirachta indica) and kikar (Acacia arabica) leaves.
    Kumar S; Gupta A; Yadav JP
    J Environ Biol; 2008 Mar; 29(2):227-32. PubMed ID: 18831380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorption of chlorophenol, chloroaniline and methylene blue on fuel oil fly ash.
    Andini S; Cioffi R; Colangelo F; Montagnaro F; Santoro L
    J Hazard Mater; 2008 Sep; 157(2-3):599-604. PubMed ID: 18289785
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of chlorophenols adsorption on activated carbons by representative pores method.
    de Oliveira JCA; Rodrigues PRM; de Lucena SMP
    Environ Sci Pollut Res Int; 2022 Nov; 29(53):79866-79874. PubMed ID: 35001291
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetic studies on the adsorption of phenol, 4-chlorophenol, and 2,4-dichlorophenol from water using activated carbons.
    Tseng RL; Wu KT; Wu FC; Juang RS
    J Environ Manage; 2010 Nov; 91(11):2208-14. PubMed ID: 20621413
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of novel epichlorohydrin cross-linked β-cyclodextrin functionalized with reduced graphene oxide composite adsorbent for treatment of phenolic wastewater.
    Rout DR; Jena HM
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):73444-73460. PubMed ID: 35622280
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of lead and zinc ions from water by low cost adsorbents.
    Mishra PC; Patel RK
    J Hazard Mater; 2009 Aug; 168(1):319-25. PubMed ID: 19299083
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon.
    Karthikeyan T; Rajgopal S; Miranda LR
    J Hazard Mater; 2005 Sep; 124(1-3):192-9. PubMed ID: 15927367
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon.
    Tan IA; Ahmad AL; Hameed BH
    J Hazard Mater; 2009 May; 164(2-3):473-82. PubMed ID: 18818013
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of low cost activated carbon from Myrtus communis and pomegranate and their efficient application for removal of Congo red from aqueous solution.
    Ghaedi M; Tavallali H; Sharifi M; Kokhdan SN; Asghari A
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():107-14. PubMed ID: 22104325
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Facile synthesis of graphene-based hyper-cross-linked porous carbon composite with superior adsorption capability for chlorophenols.
    Liu Y; Men B; Hu A; You Q; Liao G; Wang D
    J Environ Sci (China); 2020 Apr; 90():395-407. PubMed ID: 32081335
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorptive removal of cyanosine from wastewater using coconut husks.
    Gupta VK; Jain R; Shrivastava M
    J Colloid Interface Sci; 2010 Jul; 347(2):309-14. PubMed ID: 20457454
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal of 3-chlorophenol from water using rice-straw-based carbon.
    Wang SL; Tzou YM; Lu YH; Sheng G
    J Hazard Mater; 2007 Aug; 147(1-2):313-8. PubMed ID: 17276599
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dye removal from wastewater using the adsorbent developed from sewage sludge.
    Chen CY; Wang P; Zhuang YY
    J Environ Sci (China); 2005; 17(6):1018-21. PubMed ID: 16465899
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.
    Liu F; Xu Z; Wan H; Wan Y; Zheng S; Zhu D
    Environ Toxicol Chem; 2011 Apr; 30(4):793-800. PubMed ID: 21191879
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of endocrine disrupting chemicals from aqueous phase using spherical microporous carbon prepared from waste polymeric exchanger.
    Long C; Lu J; Li A; Zhang Q
    Water Sci Technol; 2009; 60(6):1607-14. PubMed ID: 19759463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.