These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 14998037)

  • 61. Analysis and comparison of inertinite-derived adsorbent with conventional adsorbents.
    Gangupomu RH; Kositkanawuth K; Sattler ML; Ramirez D; Dennis BH; MacDonnell FM; Billo R; Priest JW
    J Air Waste Manag Assoc; 2012 May; 62(5):489-99. PubMed ID: 22696799
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Preferential adsorption of pentachlorophenol from chlorophenols-containing wastewater using N-doped ordered mesoporous carbon.
    Yang B; Liu Y; Li Z; Lei L; Zhou J; Zhang X
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1482-91. PubMed ID: 26374540
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Preparation of phenylboronic acid based hypercrosslinked polymers for effective adsorption of chlorophenols.
    Liu W; Wang J; Liu J; Hou F; Wu Q; Wang C; Wang Z
    J Chromatogr A; 2020 Sep; 1628():461470. PubMed ID: 32822993
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fundamental adsorption characteristics of carbonaceous adsorbents for 1,2,3,4-tetrachlorobenzene in a model gas of an incineration plant.
    Inoue K; Kawamoto K
    Environ Sci Technol; 2005 Aug; 39(15):5844-50. PubMed ID: 16124324
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Adsorption of phenolic compound by aged-refuse.
    Xiaoli C; Youcai Z
    J Hazard Mater; 2006 Sep; 137(1):410-7. PubMed ID: 16574320
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Preparation of Starch-Hard Carbon Spherules from Ginkgo Seeds and Their Phenol-Adsorption Characteristics.
    Chen H; Wang C; Ye J; Zhou H; Tao R; Li W
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29301321
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Toward an effective adsorbent for polar pollutants: formaldehyde adsorption by activated carbon.
    Lee KJ; Miyawaki J; Shiratori N; Yoon SH; Jang J
    J Hazard Mater; 2013 Sep; 260():82-8. PubMed ID: 23747466
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms.
    Oh SY; Seo YD
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):951-61. PubMed ID: 25687609
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recent progress on tobacco wastes-derived adsorbents for the remediation of aquatic pollutants: A review.
    Ahmed MJ; Hameed BH
    Environ Res; 2024 Apr; 247():118203. PubMed ID: 38237752
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Physically activated charcoal from waste and low-cost biomass: Adsorptive and porosity studies.
    Kukučka MĐ; Kukučka Stojanović NM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Dec; 52(14):1341-1351. PubMed ID: 28952890
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Removal of estrone and 17beta-estradiol from water by adsorption.
    Zhang Y; Zhou JL
    Water Res; 2005 Oct; 39(16):3991-4003. PubMed ID: 16126247
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Edible fungus slag derived nitrogen-doped hierarchical porous carbon as a high-performance adsorbent for rapid removal of organic pollutants from water.
    Cheng J; Gu JJ; Tao W; Wang P; Liu L; Wang CY; Li YK; Feng XH; Qiu GH; Cao FF
    Bioresour Technol; 2019 Dec; 294():122149. PubMed ID: 31563741
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon prepared from cotton stalk fibre.
    Li K; Zheng Z; Huang X; Zhao G; Feng J; Zhang J
    J Hazard Mater; 2009 Jul; 166(1):213-20. PubMed ID: 19111985
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material.
    Hameed BH; Rahman AA
    J Hazard Mater; 2008 Dec; 160(2-3):576-81. PubMed ID: 18434009
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.
    Zhu X; Tsang DC; Chen F; Li S; Yang X
    Environ Technol; 2015; 36(24):3094-102. PubMed ID: 26050736
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A comparative study of multicomponent adsorption of phenolic compounds on GAC and ACFs.
    Lu Q; Sorial GA
    J Hazard Mater; 2009 Aug; 167(1-3):89-96. PubMed ID: 19171428
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Removal of phenol and chlorophenols from water by coir pith carbon: equilibrium and rate studies.
    Namasivayam C; Kavitha D
    J Environ Sci Eng; 2004 Jul; 46(3):217-32. PubMed ID: 16669312
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Behavior of mesoporous activated carbon used as a remover in Congo red adsorption process.
    Sayğılı H; Güzel F
    Water Sci Technol; 2017 Apr; 2017(1):170-183. PubMed ID: 29698232
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hard coal as a potential low-cost adsorbent for removal of 4-chlorophenol from water.
    Kuśmierek K; Zarębska K; Świątkowski A
    Water Sci Technol; 2016; 73(8):2025-30. PubMed ID: 27120657
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sericin-derived activated carbon-loaded alginate bead: An effective and recyclable natural polymer-based adsorbent for methylene blue removal.
    Kwak HW; Hong Y; Lee ME; Jin HJ
    Int J Biol Macromol; 2018 Dec; 120(Pt A):906-914. PubMed ID: 30165149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.