BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 14998371)

  • 1. Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites.
    Cater MA; Forbes J; La Fontaine S; Cox D; Mercer JF
    Biochem J; 2004 Jun; 380(Pt 3):805-13. PubMed ID: 14998371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper binding to the N-terminal metal-binding sites or the CPC motif is not essential for copper-induced trafficking of the human Wilson protein (ATP7B).
    Cater MA; La Fontaine S; Mercer JF
    Biochem J; 2007 Jan; 401(1):143-53. PubMed ID: 16939419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of GMXCXXC metal binding sites in the copper-induced redistribution of the Menkes protein.
    Strausak D; La Fontaine S; Hill J; Firth SD; Lockhart PJ; Mercer JF
    J Biol Chem; 1999 Apr; 274(16):11170-7. PubMed ID: 10196202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper-dependent interaction of dynactin subunit p62 with the N terminus of ATP7B but not ATP7A.
    Lim CM; Cater MA; Mercer JF; La Fontaine S
    J Biol Chem; 2006 May; 281(20):14006-14. PubMed ID: 16554302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-induced trafficking of the cU-ATPases: a key mechanism for copper homeostasis.
    Mercer JF; Barnes N; Stevenson J; Strausak D; Llanos RM
    Biometals; 2003 Mar; 16(1):175-84. PubMed ID: 12572677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP7B mediates vesicular sequestration of copper: insight into biliary copper excretion.
    Cater MA; La Fontaine S; Shield K; Deal Y; Mercer JF
    Gastroenterology; 2006 Feb; 130(2):493-506. PubMed ID: 16472602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the copper-binding domain in the copper transport function of ATP7B, the P-type ATPase defective in Wilson disease.
    Forbes JR; Hsi G; Cox DW
    J Biol Chem; 1999 Apr; 274(18):12408-13. PubMed ID: 10212214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Communication between the N and C termini is required for copper-stimulated Ser/Thr phosphorylation of Cu(I)-ATPase (ATP7B).
    Braiterman LT; Gupta A; Chaerkady R; Cole RN; Hubbard AL
    J Biol Chem; 2015 Apr; 290(14):8803-19. PubMed ID: 25666620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level.
    Bartee MY; Lutsenko S
    Biometals; 2007 Jun; 20(3-4):627-37. PubMed ID: 17268820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-dependent trafficking of Wilson disease mutant ATP7B proteins.
    Forbes JR; Cox DW
    Hum Mol Genet; 2000 Aug; 9(13):1927-35. PubMed ID: 10942420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-regulated trafficking of the Menkes disease copper ATPase is associated with formation of a phosphorylated catalytic intermediate.
    Petris MJ; Voskoboinik I; Cater M; Smith K; Kim BE; Llanos RM; Strausak D; Camakaris J; Mercer JF
    J Biol Chem; 2002 Nov; 277(48):46736-42. PubMed ID: 12228238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apical targeting and Golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B.
    Braiterman L; Nyasae L; Guo Y; Bustos R; Lutsenko S; Hubbard A
    Am J Physiol Gastrointest Liver Physiol; 2009 Feb; 296(2):G433-44. PubMed ID: 19033537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-induced translocation of the Wilson disease protein ATP7B independent of Murr1/COMMD1 and Rab7.
    Weiss KH; Lozoya JC; Tuma S; Gotthardt D; Reichert J; Ehehalt R; Stremmel W; Füllekrug J
    Am J Pathol; 2008 Dec; 173(6):1783-94. PubMed ID: 18974300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical roles for the COOH terminus of the Cu-ATPase ATP7B in protein stability, trans-Golgi network retention, copper sensing, and retrograde trafficking.
    Braiterman L; Nyasae L; Leves F; Hubbard AL
    Am J Physiol Gastrointest Liver Physiol; 2011 Jul; 301(1):G69-81. PubMed ID: 21454443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clusterin (apolipoprotein J), a molecular chaperone that facilitates degradation of the copper-ATPases ATP7A and ATP7B.
    Materia S; Cater MA; Klomp LW; Mercer JF; La Fontaine S
    J Biol Chem; 2011 Mar; 286(12):10073-83. PubMed ID: 21242307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The loop connecting metal-binding domains 3 and 4 of ATP7B is a target of a kinase-mediated phosphorylation.
    Bartee MY; Ralle M; Lutsenko S
    Biochemistry; 2009 Jun; 48(24):5573-81. PubMed ID: 19405516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the toxic milk mutation (tx) on the function and intracellular localization of Wnd, the murine homologue of the Wilson copper ATPase.
    La Fontaine S; Theophilos MB; Firth SD; Gould R; Parton RG; Mercer JF
    Hum Mol Genet; 2001 Feb; 10(4):361-70. PubMed ID: 11157799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence variation in the ATP-binding domain of the Wilson disease transporter, ATP7B, affects copper transport in a yeast model system.
    Hsi G; Cullen LM; Macintyre G; Chen MM; Glerum DM; Cox DW
    Hum Mutat; 2008 Apr; 29(4):491-501. PubMed ID: 18203200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins.
    Linz R; Lutsenko S
    J Bioenerg Biomembr; 2007 Dec; 39(5-6):403-7. PubMed ID: 18000748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NH2-terminal signals in ATP7B Cu-ATPase mediate its Cu-dependent anterograde traffic in polarized hepatic cells.
    Guo Y; Nyasae L; Braiterman LT; Hubbard AL
    Am J Physiol Gastrointest Liver Physiol; 2005 Nov; 289(5):G904-16. PubMed ID: 15994426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.