These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 14998578)
1. In-line monitoring of a pharmaceutical blending process using FT-Raman spectroscopy. Vergote GJ; De Beer TR; Vervaet C; Remon JP; Baeyens WR; Diericx N; Verpoort F Eur J Pharm Sci; 2004 Mar; 21(4):479-85. PubMed ID: 14998578 [TBL] [Abstract][Full Text] [Related]
2. Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process. De Beer TR; Bodson C; Dejaegher B; Walczak B; Vercruysse P; Burggraeve A; Lemos A; Delattre L; Heyden YV; Remon JP; Vervaet C; Baeyens WR J Pharm Biomed Anal; 2008 Nov; 48(3):772-9. PubMed ID: 18799281 [TBL] [Abstract][Full Text] [Related]
3. Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension. De Beer TR; Baeyens WR; Ouyang J; Vervaet C; Remon JP Analyst; 2006 Oct; 131(10):1137-44. PubMed ID: 17003862 [TBL] [Abstract][Full Text] [Related]
4. Comparison of sampling techniques for in-line monitoring using Raman spectroscopy. Wikström H; Lewis IR; Taylor LS Appl Spectrosc; 2005 Jul; 59(7):934-41. PubMed ID: 16053566 [TBL] [Abstract][Full Text] [Related]
5. Advanced calibration strategy for in situ quantitative monitoring of phase transition processes in suspensions using FT-Raman spectroscopy. Chen ZP; Fevotte G; Caillet A; Littlejohn D; Morris J Anal Chem; 2008 Sep; 80(17):6658-65. PubMed ID: 18665607 [TBL] [Abstract][Full Text] [Related]
6. Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring. De Beer TR; Allesø M; Goethals F; Coppens A; Heyden YV; De Diego HL; Rantanen J; Verpoort F; Vervaet C; Remon JP; Baeyens WR Anal Chem; 2007 Nov; 79(21):7992-8003. PubMed ID: 17896825 [TBL] [Abstract][Full Text] [Related]
7. Application of Raman spectroscopy for on-line monitoring of low dose blend uniformity. Hausman DS; Cambron RT; Sakr A Int J Pharm; 2005 Jul; 298(1):80-90. PubMed ID: 15936906 [TBL] [Abstract][Full Text] [Related]
8. Raman spectroscopy for quantitative analysis of pharmaceutical solids. Strachan CJ; Rades T; Gordon KC; Rantanen J J Pharm Pharmacol; 2007 Feb; 59(2):179-92. PubMed ID: 17270072 [TBL] [Abstract][Full Text] [Related]
9. Determination of the resolution of a multichannel Raman spectrometer using Fourier transform Raman spectra. Bowie BT; Griffiths PR Appl Spectrosc; 2003 Feb; 57(2):190-6. PubMed ID: 14610957 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a direct, non-destructive quantitative method for medroxyprogesterone acetate in a pharmaceutical suspension using FT-Raman spectroscopy. De Beer TR; Vergote GJ; Baeyens WR; Remon JP; Vervaet C; Verpoort F Eur J Pharm Sci; 2004 Dec; 23(4-5):355-62. PubMed ID: 15567288 [TBL] [Abstract][Full Text] [Related]
11. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. De Beer T; Burggraeve A; Fonteyne M; Saerens L; Remon JP; Vervaet C Int J Pharm; 2011 Sep; 417(1-2):32-47. PubMed ID: 21167266 [TBL] [Abstract][Full Text] [Related]
12. Raman spectroscopy for the process analysis of the manufacturing of a suspension metered dose inhaler. Butz J; de la Cruz L; DiTonno J; DeBoyace K; Ewing G; Donovan B; Medendorp J J Pharm Biomed Anal; 2011 Apr; 54(5):1013-9. PubMed ID: 21232901 [TBL] [Abstract][Full Text] [Related]
13. Near InfraRed Spectroscopy homogeneity evaluation of complex powder blends in a small-scale pharmaceutical preformulation process, a real-life application. Storme-Paris I; Clarot I; Esposito S; Chaumeil JC; Nicolas A; Brion F; Rieutord A; Chaminade P Eur J Pharm Biopharm; 2009 May; 72(1):189-98. PubMed ID: 19059338 [TBL] [Abstract][Full Text] [Related]
15. Application of on-line Raman spectroscopy for characterizing relationships between drug hydration state and tablet physical stability. Hausman DS; Cambron RT; Sakr A Int J Pharm; 2005 Aug; 299(1-2):19-33. PubMed ID: 15979262 [TBL] [Abstract][Full Text] [Related]
16. Mass-balanced blend uniformity analysis of pharmaceutical powders by at-line near-infrared spectroscopy with a fiber-optic probe. Li W; Johnson MC; Bruce R; Ulrich S; Rasmussen H; Worosila GD Int J Pharm; 2006 Dec; 326(1-2):182-5. PubMed ID: 16920283 [TBL] [Abstract][Full Text] [Related]
17. Raman spectroscopy as a PAT for pharmaceutical blending: Advantages and disadvantages. Riolo D; Piazza A; Cottini C; Serafini M; Lutero E; Cuoghi E; Gasparini L; Botturi D; Marino IG; Aliatis I; Bersani D; Lottici PP J Pharm Biomed Anal; 2018 Feb; 149():329-334. PubMed ID: 29132112 [TBL] [Abstract][Full Text] [Related]
18. Comparison of high-resolution ultrasonic resonator technology and Raman spectroscopy as novel process analytical tools for drug quantification in self-emulsifying drug delivery systems. Stillhart C; Kuentz M J Pharm Biomed Anal; 2012 Feb; 59():29-37. PubMed ID: 22079118 [TBL] [Abstract][Full Text] [Related]
19. Influence of particle size on the quantitative determination of salicylic acid in a pharmaceutical ointment using FT-Raman spectroscopy. De Beer TR; Baeyens WR; Heyden YV; Remon JP; Vervaet C; Verpoort F Eur J Pharm Sci; 2007 Mar; 30(3-4):229-35. PubMed ID: 17161940 [TBL] [Abstract][Full Text] [Related]
20. Real-time endpoint monitoring and determination for a pharmaceutical salt formation process with in-line FT-IR spectroscopy. Lin Z; Zhou L; Mahajan A; Song S; Wang T; Ge Z; Ellison D J Pharm Biomed Anal; 2006 Apr; 41(1):99-104. PubMed ID: 16321495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]