These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 14998723)

  • 21. Structural characterization of clear human lens lipid membranes by near-infrared Fourier transform Raman spectroscopy.
    Borchman D; Ozaki Y; Lamba OP; Byrdwell WC; Czarnecki MA; Yappert MC
    Curr Eye Res; 1995 Jun; 14(6):511-5. PubMed ID: 7671633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. alpha-Crystallin binding in vitro to lipids from clear human lenses.
    Grami V; Marrero Y; Huang L; Tang D; Yappert MC; Borchman D
    Exp Eye Res; 2005 Aug; 81(2):138-46. PubMed ID: 15967437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liquid chromatography/mass-spectrometric characterization of sphingomyelin and dihydrosphingomyelin of human lens membranes.
    Byrdwell WC; Borchman D
    Ophthalmic Res; 1997; 29(4):191-206. PubMed ID: 9261843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Changes of membrane glycerolipids and sphingolipids during Flammulina velutipes surface growth].
    Kotlova ER; Senik SV; Köcher T; Shavarda AL; Kiiashko AA; Psurtseva NV; Siniutina NF; Zubarev RA
    Mikrobiologiia; 2009; 78(2):226-35. PubMed ID: 19449736
    [No Abstract]   [Full Text] [Related]  

  • 25. Age-dependent changes in the distribution and concentration of human lens cholesterol and phospholipids.
    Li LK; So L; Spector A
    Biochim Biophys Acta; 1987 Jan; 917(1):112-20. PubMed ID: 3790601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Post-translational modifications of aquaporin 0 (AQP0) in the normal human lens: spatial and temporal occurrence.
    Ball LE; Garland DL; Crouch RK; Schey KL
    Biochemistry; 2004 Aug; 43(30):9856-65. PubMed ID: 15274640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human lens lipids differ markedly from those of commonly used experimental animals.
    Deeley JM; Mitchell TW; Wei X; Korth J; Nealon JR; Blanksby SJ; Truscott RJ
    Biochim Biophys Acta; 2008; 1781(6-7):288-98. PubMed ID: 18474264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane lipid biosynthesis in the Philly mouse lens. I. The major phospholipid classes.
    Andrews JS; Leonard-Martin T; Kador PF
    Curr Eye Res; 1984 Feb; 3(2):279-85. PubMed ID: 6705554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterisation of sphingolipids in the human lens by thin layer chromatography-desorption electrospray ionisation mass spectrometry.
    Seng JA; Ellis SR; Hughes JR; Maccarone AT; Truscott RJ; Blanksby SJ; Mitchell TW
    Biochim Biophys Acta; 2014 Sep; 1841(9):1285-91. PubMed ID: 24873739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sphingolipid transport in eukaryotic cells.
    van Meer G; Holthuis JC
    Biochim Biophys Acta; 2000 Jun; 1486(1):145-70. PubMed ID: 10856719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reevaluation of the phospholipid composition in membranes of adult human lenses by (31)P NMR and MALDI MS.
    Estrada R; Puppato A; Borchman D; Yappert MC
    Biochim Biophys Acta; 2010 Mar; 1798(3):303-11. PubMed ID: 19925778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of membrane lipid structure on plasma membrane Ca2+ -ATPase activity.
    Tang D; Dean WL; Borchman D; Paterson CA
    Cell Calcium; 2006 Mar; 39(3):209-16. PubMed ID: 16412504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Sphingolipids and malignant growth].
    Diatlovitskaia EV
    Biokhimiia; 1995 Jun; 60(6):843-50. PubMed ID: 7654862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of alphasmooth muscle actin in lens epithelia from human donors and cataract patients.
    Rungger-Brändle E; Conti A; Leuenberger PM; Rungger D
    Exp Eye Res; 2005 Nov; 81(5):539-50. PubMed ID: 15935344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.
    Pankov R; Markovska T; Antonov P; Ivanova L; Momchilova A
    Gen Physiol Biophys; 2006 Sep; 25(3):313-24. PubMed ID: 17197729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic phase transition parameters of human lens dihydrosphingomyelin.
    Borchman D; Byrdwell WC; Yappert MC
    Ophthalmic Res; 1996; 28 Suppl 1():81-5. PubMed ID: 8727973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, alpha-crystallin, in maintaining lens flexibility.
    Heys KR; Friedrich MG; Truscott RJ
    Aging Cell; 2007 Dec; 6(6):807-15. PubMed ID: 17973972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phospholipid composition of the rat lens is independent of diet.
    Nealon JR; Blanksby SJ; Abbott SK; Hulbert AJ; Mitchell TW; Truscott RJ
    Exp Eye Res; 2008 Dec; 87(6):502-14. PubMed ID: 18796304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the interaction of dihydrocholesterol and cholesterol with sphingolipid or phospholipid Langmuir monolayers.
    Lancelot E; Grauby-Heywang C
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):81-6. PubMed ID: 17544260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxindolealanine in age-related human cataracts.
    Rousseva LA; Gaillard ER; Paik DC; Merriam JC; Ryzhov V; Garland DL; Dillon JP
    Exp Eye Res; 2007 Dec; 85(6):861-8. PubMed ID: 17935715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.