These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 14998730)

  • 1. Evaluation of products upon the reaction of hypohalous acid with unsaturated phosphatidylcholines.
    Spalteholz H; Wenske K; Panasenko OM; Schiller J; Arnhold J
    Chem Phys Lipids; 2004 Apr; 129(1):85-96. PubMed ID: 14998730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of chloride on modification of unsaturated phosphatidylcholines by the myeloperoxidase/hydrogen peroxide/bromide system.
    Panasenko OM; Vakhrusheva T; Tretyakov V; Spalteholz H; Arnhold J
    Chem Phys Lipids; 2007; 149(1-2):40-51. PubMed ID: 17604010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of hypohalous acids and heme peroxidases with unsaturated phosphatidylcholines.
    Spalteholz H; Wenske K; Arnhold J
    Biofactors; 2005; 24(1-4):67-76. PubMed ID: 16403965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride.
    Senthilmohan R; Kettle AJ
    Arch Biochem Biophys; 2006 Jan; 445(2):235-44. PubMed ID: 16125131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase.
    Spalteholz H; Panasenko OM; Arnhold J
    Arch Biochem Biophys; 2006 Jan; 445(2):225-34. PubMed ID: 16111649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hypochlorous acid on unsaturated phosphatidylcholines.
    Arnhold J; Osipov AN; Spalteholz H; Panasenko OM; Schiller J
    Free Radic Biol Med; 2001 Nov; 31(9):1111-9. PubMed ID: 11677044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of flavonols on inactivation of alpha1-antitrypsin induced by hypohalous acids and the myeloperoxidase-hydrogen peroxide-halide system.
    Bouriche H; Salavei P; Lessig J; Arnhold J
    Arch Biochem Biophys; 2007 Mar; 459(1):137-42. PubMed ID: 17141727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the positive and negative ion electrospray ionization and matrix-assisted laser desorption ionization-time-of-flight mass spectra of the reaction products of phosphatidylethanolamines and hypochlorous acid.
    Richter G; Schober C; Süss R; Fuchs B; Birkemeyer C; Schiller J
    Anal Biochem; 2008 May; 376(1):157-9. PubMed ID: 18295587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.
    Alkorta I; Blanco F; Solimannejad M; Elguero J
    J Phys Chem A; 2008 Oct; 112(43):10856-63. PubMed ID: 18837495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of exogenous hypochlorite or hypochlorite produced by myeloperoxidase + H2O2 + Cl- system with unsaturated phosphatidylcholines.
    Panasenko OM; Osipov AN; Schiller J; Arnhold J
    Biochemistry (Mosc); 2002 Aug; 67(8):889-900. PubMed ID: 12223088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorinated and brominated phosphatidylcholines are generated under the influence of the Fenton reagent at low pH-a MALDI-TOF MS study.
    Wu J; Teuber K; Eibisch M; Fuchs B; Schiller J
    Chem Phys Lipids; 2011 Jan; 164(1):1-8. PubMed ID: 20932962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloperoxidase-induced formation of chlorohydrins and lysophospholipids from unsaturated phosphatidylcholines.
    Panasenko OM; Spalteholz H; Schiller J; Arnhold J
    Free Radic Biol Med; 2003 Mar; 34(5):553-62. PubMed ID: 12614844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxidase-mediated bromination of unsaturated fatty acids to form bromohydrins.
    Carr AC; Winterbourn CC; van den Berg JJ
    Arch Biochem Biophys; 1996 Mar; 327(2):227-33. PubMed ID: 8619607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of amino acid residues in human serum albumin by myeloperoxidase.
    Salavej P; Spalteholz H; Arnhold J
    Free Radic Biol Med; 2006 Feb; 40(3):516-25. PubMed ID: 16443167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimizing 18O/16O back-exchange in the relative quantification of ribonucleic acids.
    Castleberry CM; Lilleness K; Baldauff R; Limbach PA
    J Mass Spectrom; 2009 Aug; 44(8):1195-202. PubMed ID: 19484804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of lysophospholipids from unsaturated phosphatidylcholines under the influence of hypochlorous acid.
    Arnhold J; Osipov AN; Spalteholz H; Panasenko OM; Schiller J
    Biochim Biophys Acta; 2002 Aug; 1572(1):91-100. PubMed ID: 12204337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitation of ribonucleic acids using 18O labeling and mass spectrometry.
    Meng Z; Limbach PA
    Anal Chem; 2005 Mar; 77(6):1891-5. PubMed ID: 15762601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary electrophoresis tandem mass spectrometry of bromine-containing charged derivatives of peptides.
    Ferenc G; Pádár P; Janáky T; Szabó Z; Tóth GK; Kovács L; Kele Z
    J Chromatogr A; 2007 Aug; 1159(1-2):119-24. PubMed ID: 17517418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A strategy for distinguishing modified peptides based on post-digestion 18O labeling and mass spectrometry.
    Sun G; Anderson VE
    Rapid Commun Mass Spectrom; 2005; 19(19):2849-56. PubMed ID: 16155976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential reactivities of hypochlorous and hypobromous acids with purified Escherichia coli phospholipid: formation of haloamines and halohydrins.
    Carr AC; van den Berg JJ; Winterbourn CC
    Biochim Biophys Acta; 1998 Jun; 1392(2-3):254-64. PubMed ID: 9630661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.