These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 14999053)

  • 21. Orthogonal coding of object location.
    Knutsen PM; Ahissar E
    Trends Neurosci; 2009 Feb; 32(2):101-9. PubMed ID: 19070909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Whisker-based discrimination of object orientation determined with a rapid training paradigm.
    Polley DB; Rickert JL; Frostig RD
    Neurobiol Learn Mem; 2005 Mar; 83(2):134-42. PubMed ID: 15721797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discrimination of vibrotactile stimuli in the rat whisker system: behavior and neurometrics.
    Gerdjikov TV; Bergner CG; Stüttgen MC; Waiblinger C; Schwarz C
    Neuron; 2010 Feb; 65(4):530-40. PubMed ID: 20188657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microsecond-scale timing precision in rodent trigeminal primary afferents.
    Bale MR; Campagner D; Erskine A; Petersen RS
    J Neurosci; 2015 Apr; 35(15):5935-40. PubMed ID: 25878266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical coupling through the skin affects whisker movements and tactile information encoding.
    Ego-Stengel V; Abbasi A; Larroche M; Lassagne H; Boubenec Y; Shulz DE
    J Neurophysiol; 2019 Oct; 122(4):1606-1622. PubMed ID: 31411931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural correlates of vibrissa resonance; band-pass and somatotopic representation of high-frequency stimuli.
    Andermann ML; Ritt J; Neimark MA; Moore CI
    Neuron; 2004 May; 42(3):451-63. PubMed ID: 15134641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Early frequency-dependent information processing and cortical control in the whisker pathway of the rat: electrophysiological study of brainstem nuclei principalis and interpolaris.
    Sanchez-Jimenez A; Panetsos F; Murciano A
    Neuroscience; 2009 Apr; 160(1):212-26. PubMed ID: 19409209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deciphering the spike train of a sensory neuron: counts and temporal patterns in the rat whisker pathway.
    Arabzadeh E; Panzeri S; Diamond ME
    J Neurosci; 2006 Sep; 26(36):9216-26. PubMed ID: 16957078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protracted development of responses to whisker deflection in rat trigeminal ganglion neurons.
    Shoykhet M; Shetty P; Minnery BS; Simons DJ
    J Neurophysiol; 2003 Sep; 90(3):1432-7. PubMed ID: 12801899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular mechanisms of suppressive interactions between somatosensory responses in vivo.
    Higley MJ; Contreras D
    J Neurophysiol; 2007 Jan; 97(1):647-58. PubMed ID: 17065248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system.
    Bush NE; Schroeder CL; Hobbs JA; Yang AE; Huet LA; Solla SA; Hartmann MJ
    Elife; 2016 Jun; 5():. PubMed ID: 27348221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response properties of mouse trigeminal ganglion neurons.
    Kwegyir-Afful EE; Marella S; Simons DJ
    Somatosens Mot Res; 2008 Dec; 25(4):209-21. PubMed ID: 18989828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gradient of tactile properties in the rat whisker pad.
    Gugig E; Sharma H; Azouz R
    PLoS Biol; 2020 Oct; 18(10):e3000699. PubMed ID: 33090990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions.
    Lichtenstein SH; Carvell GE; Simons DJ
    Somatosens Mot Res; 1990; 7(1):47-65. PubMed ID: 2330787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterogeneous integration of bilateral whisker signals by neurons in primary somatosensory cortex of awake rats.
    Wiest MC; Bentley N; Nicolelis MA
    J Neurophysiol; 2005 May; 93(5):2966-73. PubMed ID: 15563555
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facial nerve injury induces facilitation of responses in both trigeminal and facial nuclei of rat.
    Kis Z; Rákos G; Farkas T; Horváth S; Toldi J
    Neurosci Lett; 2004 Apr; 358(3):223-5. PubMed ID: 15039121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single unit oscillations in rat trigeminal nuclei and their control by the sensorimotor cortex.
    Panetsos F; Sanchez-Jimenez A
    Neuroscience; 2010 Aug; 169(2):893-905. PubMed ID: 20452404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 2-DG uptake patterns related to single vibrissae during exploratory behaviors in the hamster trigeminal system.
    Jacquin MF; McCasland JS; Henderson TA; Rhoades RW; Woolsey TA
    J Comp Neurol; 1993 Jun; 332(1):38-58. PubMed ID: 8390494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facial whisker pattern is not sufficient to instruct a whisker-related topographic map in the mouse somatosensory brainstem.
    Laumonnerie C; Bechara A; Vilain N; Kurihara Y; Kurihara H; Rijli FM
    Development; 2015 Nov; 142(21):3704-12. PubMed ID: 26417040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Behavioral state dependency of neural activity and sensory (whisker) responses in superior colliculus.
    Cohen JD; Castro-Alamancos MA
    J Neurophysiol; 2010 Sep; 104(3):1661-72. PubMed ID: 20610783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.