BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 14999063)

  • 1. Corticospinal system development depends on motor experience.
    Martin JH; Choy M; Pullman S; Meng Z
    J Neurosci; 2004 Mar; 24(9):2122-32. PubMed ID: 14999063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal development of differential projections from the caudal and rostral motor cortex subregions.
    Li Q; Martin JH
    Exp Brain Res; 2000 Sep; 134(2):187-98. PubMed ID: 11037285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of sensory-motor cortex activity in postnatal development of corticospinal axon terminals in the cat.
    Friel KM; Martin JH
    J Comp Neurol; 2005 Apr; 485(1):43-56. PubMed ID: 15776437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postnatal development of connectional specificity of corticospinal terminals in the cat.
    Li Q; Martin JH
    J Comp Neurol; 2002 May; 447(1):57-71. PubMed ID: 11967895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postnatal development of corticospinal axon terminal morphology in the cat.
    Li Q; Martin JH
    J Comp Neurol; 2001 Jun; 435(2):127-41. PubMed ID: 11391636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transition from development to motor control function in the corticospinal system.
    Meng Z; Li Q; Martin JH
    J Neurosci; 2004 Jan; 24(3):605-14. PubMed ID: 14736845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rescuing transient corticospinal terminations and promoting growth with corticospinal stimulation in kittens.
    Salimi I; Martin JH
    J Neurosci; 2004 May; 24(21):4952-61. PubMed ID: 15163687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impairments in prehension produced by early postnatal sensory motor cortex activity blockade.
    Martin JH; Donarummo L; Hacking A
    J Neurophysiol; 2000 Feb; 83(2):895-906. PubMed ID: 10669503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticospinal axons make direct synaptic connections with spinal motoneurons innervating forearm muscles early during postnatal development in the rat.
    Maeda H; Fukuda S; Kameda H; Murabe N; Isoo N; Mizukami H; Ozawa K; Sakurai M
    J Physiol; 2016 Jan; 594(1):189-205. PubMed ID: 26503304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilateral activity-dependent interactions in the developing corticospinal system.
    Friel KM; Martin JH
    J Neurosci; 2007 Oct; 27(41):11083-90. PubMed ID: 17928450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity- and use-dependent plasticity of the developing corticospinal system.
    Martin JH; Friel KM; Salimi I; Chakrabarty S
    Neurosci Biobehav Rev; 2007; 31(8):1125-35. PubMed ID: 17599407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-dependent development of cortical axon terminations in the spinal cord and brain stem.
    Martin JH; Kably B; Hacking A
    Exp Brain Res; 1999 Mar; 125(2):184-99. PubMed ID: 10204771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-dependent competition between developing corticospinal terminations.
    Martin JH; Lee SJ
    Neuroreport; 1999 Aug; 10(11):2277-82. PubMed ID: 10439448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor Cortex Activity Organizes the Developing Rubrospinal System.
    Williams PT; Martin JH
    J Neurosci; 2015 Sep; 35(39):13363-74. PubMed ID: 26424884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using motor behavior during an early critical period to restore skilled limb movement after damage to the corticospinal system during development.
    Friel K; Chakrabarty S; Kuo HC; Martin J
    J Neurosci; 2012 Jul; 32(27):9265-76. PubMed ID: 22764234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats.
    Wen TC; Lall S; Pagnotta C; Markward J; Gupta D; Ratnadurai-Giridharan S; Bucci J; Greenwald L; Klugman M; Hill NJ; Carmel JB
    Front Neural Circuits; 2018; 12():28. PubMed ID: 29706871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limits on recovery in the corticospinal tract of the rat: partial lesions impair skilled reaching and the topographic representation of the forelimb in motor cortex.
    Piecharka DM; Kleim JA; Whishaw IQ
    Brain Res Bull; 2005 Aug; 66(3):203-11. PubMed ID: 16023917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postnatal development of a segmental switch enables corticospinal tract transmission to spinal forelimb motor circuits.
    Chakrabarty S; Martin JH
    J Neurosci; 2010 Feb; 30(6):2277-88. PubMed ID: 20147554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Automated Test of Rat Forelimb Supination Quantifies Motor Function Loss and Recovery After Corticospinal Injury.
    Sindhurakar A; Butensky SD; Meyers E; Santos J; Bethea T; Khalili A; Sloan AP; Rennaker RL; Carmel JB
    Neurorehabil Neural Repair; 2017 Feb; 31(2):122-132. PubMed ID: 27530125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential impairments in reaching and grasping produced by local inactivation within the forelimb representation of the motor cortex in the cat.
    Martin JH; Ghez C
    Exp Brain Res; 1993; 94(3):429-43. PubMed ID: 8359257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.