BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 14999063)

  • 21. Differential activity-dependent development of corticospinal control of movement and final limb position during visually guided locomotion.
    Friel KM; Drew T; Martin JH
    J Neurophysiol; 2007 May; 97(5):3396-406. PubMed ID: 17376849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of forelimb use on postnatal development of the forelimb motor representation in primary motor cortex of the cat.
    Martin JH; Engber D; Meng Z
    J Neurophysiol; 2005 May; 93(5):2822-31. PubMed ID: 15574795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequential activation of motor cortical neurons contributes to intralimb coordination during reaching in the cat by modulating muscle synergies.
    Yakovenko S; Krouchev N; Drew T
    J Neurophysiol; 2011 Jan; 105(1):388-409. PubMed ID: 21068260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery of distal skills after neonatal lesion of the sensorimotor cortex in the cat.
    Armand J; Kably B
    Neurosci Lett; 1992 Apr; 138(1):45-8. PubMed ID: 1407665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Critical timing of sensorimotor cortex lesions for the recovery of motor skills in the developing cat.
    Armand J; Kably B
    Exp Brain Res; 1993; 93(1):73-88. PubMed ID: 8467893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postnatal maturation of the red nucleus motor map depends on rubrospinal connections with forelimb motor pools.
    Williams PT; Kim S; Martin JH
    J Neurosci; 2014 Mar; 34(12):4432-41. PubMed ID: 24647962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets.
    Kuang RZ; Kalil K
    J Comp Neurol; 1994 Jun; 344(2):270-82. PubMed ID: 8077461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinically Relevant Levels of 4-Aminopyridine Strengthen Physiological Responses in Intact Motor Circuits in Rats, Especially After Pyramidal Tract Injury.
    Sindhurakar A; Mishra AM; Gupta D; Iaci JF; Parry TJ; Carmel JB
    Neurorehabil Neural Repair; 2017 Apr; 31(4):387-396. PubMed ID: 28107804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Postnatal development of corticospinal postsynaptic action.
    Meng Z; Martin JH
    J Neurophysiol; 2003 Aug; 90(2):683-92. PubMed ID: 12702708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The corticospinal system: from development to motor control.
    Martin JH
    Neuroscientist; 2005 Apr; 11(2):161-73. PubMed ID: 15746384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential spinal projections of subregions in the forelimb area of the motor cortex in the cat.
    Martin JH
    Neurosci Lett; 1993 Sep; 159(1-2):195-8. PubMed ID: 7505414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection.
    Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM
    Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke.
    Starkey ML; Bleul C; Zörner B; Lindau NT; Mueggler T; Rudin M; Schwab ME
    Brain; 2012 Nov; 135(Pt 11):3265-81. PubMed ID: 23169918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative evidence for multiple widespread representations of individual muscles in the cat motor cortex.
    Schneider C; Zytnicki D; Capaday C
    Neurosci Lett; 2001 Sep; 310(2-3):183-7. PubMed ID: 11585597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prior action execution has no effect on corticospinal facilitation during action observation.
    Loporto M; McAllister CJ; Edwards MG; Wright DJ; Holmes PS
    Behav Brain Res; 2012 May; 231(1):124-9. PubMed ID: 22449863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive changes in locomotor activity following botulinum toxin injection in ankle extensor muscles of cats.
    Misiaszek JE; Pearson KG
    J Neurophysiol; 2002 Jan; 87(1):229-39. PubMed ID: 11784745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A motor cortical contribution to the anticipatory postural adjustments that precede reaching in the cat.
    Yakovenko S; Drew T
    J Neurophysiol; 2009 Aug; 102(2):853-74. PubMed ID: 19458152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Axotomized Corticospinal Neurons Increase Supra-Lesional Innervation and Remain Crucial for Skilled Reaching after Bilateral Pyramidotomy.
    Mosberger AC; Miehlbradt JC; Bjelopoljak N; Schneider MP; Wahl AS; Ineichen BV; Gullo M; Schwab ME
    Cereb Cortex; 2018 Feb; 28(2):625-643. PubMed ID: 28069760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anticipatory planning reveals segmentation of cortical motor output during action observation.
    Janssen L; Steenbergen B; Carson RG
    Cereb Cortex; 2015 Jan; 25(1):192-201. PubMed ID: 23960201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.