BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 14999063)

  • 41. Corticospinal tract development and spinal cord innervation differ between cervical and lumbar targets.
    Kamiyama T; Kameda H; Murabe N; Fukuda S; Yoshioka N; Mizukami H; Ozawa K; Sakurai M
    J Neurosci; 2015 Jan; 35(3):1181-91. PubMed ID: 25609632
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Food-taking in the cat investigated with transection of the rubro- and corticospinal tracts.
    Perfiliev S; Pettersson LG; Lundberg A
    Neurosci Res; 1998 Oct; 32(2):181-4. PubMed ID: 9858025
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Task-specific modulation of corticospinal neuron activity during motor learning in mice.
    Serradj N; Marino F; Moreno-López Y; Bernstein A; Agger S; Soliman M; Sloan A; Hollis E
    Nat Commun; 2023 May; 14(1):2708. PubMed ID: 37169765
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proximal and distal impairments in rat forelimb use in reaching follow unilateral pyramidal tract lesions.
    Whishaw IQ; Pellis SM; Gorny B; Kolb B; Tetzlaff W
    Behav Brain Res; 1993 Jul; 56(1):59-76. PubMed ID: 7691077
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of low pyramidal lesions on forelimb movements in the cat.
    Alstermark B; Isa T; Lundberg A; Pettersson LG; Tantisira B
    Neurosci Res; 1989 Oct; 7(1):71-5. PubMed ID: 2812571
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Grasp-Based Functional Coupling Between Reach- and Grasp-Related Components of Forelimb Muscle Activity.
    Geed S; van Kan PLE
    J Mot Behav; 2017; 49(3):312-328. PubMed ID: 27589010
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impairments in reaching during reversible inactivation of the distal forelimb representation of the motor cortex in the cat.
    Martin JH; Ghez C
    Neurosci Lett; 1991 Nov; 133(1):61-4. PubMed ID: 1791999
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System.
    Gennaro M; Mattiello A; Mazziotti R; Antonelli C; Gherardini L; Guzzetta A; Berardi N; Cioni G; Pizzorusso T
    Front Neural Circuits; 2017; 11():47. PubMed ID: 28706475
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Forelimb electromyographic responses to motor cortex stimulation during locomotion in the cat.
    Armstrong DM; Drew T
    J Physiol; 1985 Oct; 367():327-51. PubMed ID: 4057102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The contribution of fast corticospinal input to the voluntary activation of proximal muscles in normal subjects and in stroke patients.
    Turton A; Lemon RN
    Exp Brain Res; 1999 Dec; 129(4):559-72. PubMed ID: 10638430
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Central regulation of motor cortex neuronal responses to forelimb nerve inputs during precision walking in the cat.
    Marple-Horvat DE; Armstrong DM
    J Physiol; 1999 Aug; 519 Pt 1(Pt 1):279-99. PubMed ID: 10432358
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Responses of motor cortical neurones in the cat to unexpected perturbations of locomotion.
    Amos A; Armstrong DM; Marple-Horvat DE
    Neurosci Lett; 1989 Sep; 104(1-2):147-51. PubMed ID: 2812528
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2005 Jul; 194(1):161-74. PubMed ID: 15899253
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the nature of the intrinsic connectivity of the cat motor cortex: evidence for a recurrent neural network topology.
    Capaday C; Ethier C; Brizzi L; Sik A; van Vreeswijk C; Gingras D
    J Neurophysiol; 2009 Oct; 102(4):2131-41. PubMed ID: 19625531
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control.
    Martin JH; Cooper SE; Hacking A; Ghez C
    J Neurophysiol; 2000 Apr; 83(4):1886-99. PubMed ID: 10758100
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke.
    Okabe N; Shiromoto T; Himi N; Lu F; Maruyama-Nakamura E; Narita K; Iwachidou N; Yagita Y; Miyamoto O
    Neuroscience; 2016 Dec; 339():338-362. PubMed ID: 27725217
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for existence of trunk-limb neural interaction in the corticospinal pathway.
    Sasaki A; Milosevic M; Sekiguchi H; Nakazawa K
    Neurosci Lett; 2018 Mar; 668():31-36. PubMed ID: 29309857
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Early skill learning is expressed through selection and tuning of cortically represented muscle synergies.
    Kargo WJ; Nitz DA
    J Neurosci; 2003 Dec; 23(35):11255-69. PubMed ID: 14657185
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Corticospinal control of the thumb-index grip depends on precision of force control: a transcranial magnetic stimulation and functional magnetic resonance imagery study in humans.
    Bonnard M; Galléa C; De Graaf JB; Pailhous J
    Eur J Neurosci; 2007 Feb; 25(3):872-80. PubMed ID: 17328782
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Motor 'surround inhibition' is not correlated with activity in surround muscles.
    Kassavetis P; Sadnicka A; Saifee TA; Belvisi D; van den Bos M; Pareés I; Kojovic M; Rothwell JC; Edwards MJ
    Eur J Neurosci; 2014 Aug; 40(3):2541-7. PubMed ID: 24815297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.