BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1208 related articles for article (PubMed ID: 14999065)

  • 1. Reactive astrocytes protect tissue and preserve function after spinal cord injury.
    Faulkner JR; Herrmann JE; Woo MJ; Tansey KE; Doan NB; Sofroniew MV
    J Neurosci; 2004 Mar; 24(9):2143-55. PubMed ID: 14999065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Essential protective roles of reactive astrocytes in traumatic brain injury.
    Myer DJ; Gurkoff GG; Lee SM; Hovda DA; Sofroniew MV
    Brain; 2006 Oct; 129(Pt 10):2761-72. PubMed ID: 16825202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional ablation of reactive astrocytes to dissect their roles in spinal cord injury and repair.
    Gu Y; Cheng X; Huang X; Yuan Y; Qin S; Tan Z; Wang D; Hu X; He C; Su Z
    Brain Behav Immun; 2019 Aug; 80():394-405. PubMed ID: 30959174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice.
    Hesp ZC; Yoseph RY; Suzuki R; Jukkola P; Wilson C; Nishiyama A; McTigue DM
    J Neurosci; 2018 Feb; 38(6):1366-1382. PubMed ID: 29279310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice.
    Bush TG; Puvanachandra N; Horner CH; Polito A; Ostenfeld T; Svendsen CN; Mucke L; Johnson MH; Sofroniew MV
    Neuron; 1999 Jun; 23(2):297-308. PubMed ID: 10399936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury.
    Wanner IB; Anderson MA; Song B; Levine J; Fernandez A; Gray-Thompson Z; Ao Y; Sofroniew MV
    J Neurosci; 2013 Jul; 33(31):12870-86. PubMed ID: 23904622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury.
    Herrmann JE; Shah RR; Chan AF; Zheng B
    Exp Neurol; 2010 Jun; 223(2):582-98. PubMed ID: 20170651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of reactive astrocytes containing S100beta protein and fibroblast growth factor-2 in the border and in the adjacent preserved tissue after a contusion injury of the spinal cord in rats: implications for wound repair and neuroregeneration.
    do Carmo Cunha J; de Freitas Azevedo Levy B; de Luca BA; de Andrade MS; Gomide VC; Chadi G
    Wound Repair Regen; 2007; 15(1):134-46. PubMed ID: 17244329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury.
    Okada S; Nakamura M; Katoh H; Miyao T; Shimazaki T; Ishii K; Yamane J; Yoshimura A; Iwamoto Y; Toyama Y; Okano H
    Nat Med; 2006 Jul; 12(7):829-34. PubMed ID: 16783372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tegaserod, a small compound mimetic of polysialic acid, promotes functional recovery after spinal cord injury in mice.
    Pan HC; Shen YQ; Loers G; Jakovcevski I; Schachner M
    Neuroscience; 2014 Sep; 277():356-66. PubMed ID: 25014876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type I interferon inhibits astrocytic gliosis and promotes functional recovery after spinal cord injury by deactivation of the MEK/ERK pathway.
    Ito M; Natsume A; Takeuchi H; Shimato S; Ohno M; Wakabayashi T; Yoshida J
    J Neurotrauma; 2009 Jan; 26(1):41-53. PubMed ID: 19196180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropsin promotes oligodendrocyte death, demyelination and axonal degeneration after spinal cord injury.
    Terayama R; Bando Y; Murakami K; Kato K; Kishibe M; Yoshida S
    Neuroscience; 2007 Aug; 148(1):175-87. PubMed ID: 17629414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming growth factor α transforms astrocytes to a growth-supportive phenotype after spinal cord injury.
    White RE; Rao M; Gensel JC; McTigue DM; Kaspar BK; Jakeman LB
    J Neurosci; 2011 Oct; 31(42):15173-87. PubMed ID: 22016551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats.
    Pannu R; Barbosa E; Singh AK; Singh I
    J Neurosci Res; 2005 Feb; 79(3):340-50. PubMed ID: 15605375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional ablation of cerebellar astrocytes in postnatal transgenic mice.
    Delaney CL; Brenner M; Messing A
    J Neurosci; 1996 Nov; 16(21):6908-18. PubMed ID: 8824329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury.
    Herrmann JE; Imura T; Song B; Qi J; Ao Y; Nguyen TK; Korsak RA; Takeda K; Akira S; Sofroniew MV
    J Neurosci; 2008 Jul; 28(28):7231-43. PubMed ID: 18614693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of 17beta-estradiol on functional outcome, release of cytokines, astrocyte reactivity and inflammatory spreading after spinal cord injury in male rats.
    Ritz MF; Hausmann ON
    Brain Res; 2008 Apr; 1203():177-88. PubMed ID: 18316064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP.
    Imura T; Kornblum HI; Sofroniew MV
    J Neurosci; 2003 Apr; 23(7):2824-32. PubMed ID: 12684469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury.
    Okada S; Nakamura M; Mikami Y; Shimazaki T; Mihara M; Ohsugi Y; Iwamoto Y; Yoshizaki K; Kishimoto T; Toyama Y; Okano H
    J Neurosci Res; 2004 Apr; 76(2):265-76. PubMed ID: 15048924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 61.