These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 14999092)

  • 1. Solid phase synthesis and binding affinity of peptidyl transferase transition state mimics containing 2'-OH at P-site position A76.
    Weinger JS; Kitchen D; Scaringe SA; Strobel SA; Muth GW
    Nucleic Acids Res; 2004; 32(4):1502-11. PubMed ID: 14999092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction.
    Schmeing TM; Huang KS; Kitchen DE; Strobel SA; Steitz TA
    Mol Cell; 2005 Nov; 20(3):437-48. PubMed ID: 16285925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regiospecificity of the peptidyl tRNA ester within the ribosomal P site.
    Huang KS; Weinger JS; Butler EB; Strobel SA
    J Am Chem Soc; 2006 Mar; 128(10):3108-9. PubMed ID: 16522067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition state chirality and role of the vicinal hydroxyl in the ribosomal peptidyl transferase reaction.
    Huang KS; Carrasco N; Pfund E; Strobel SA
    Biochemistry; 2008 Aug; 47(34):8822-7. PubMed ID: 18672893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 23S rRNA similarity from selection for peptidyl transferase mimicry.
    Welch M; Majerfeld I; Yarus M
    Biochemistry; 1997 Jun; 36(22):6614-23. PubMed ID: 9184141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2'-OH at A2451 of 23S rRNA.
    Erlacher MD; Lang K; Wotzel B; Rieder R; Micura R; Polacek N
    J Am Chem Soc; 2006 Apr; 128(13):4453-9. PubMed ID: 16569023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of ribosomal protein L27 in peptidyl transfer.
    Trobro S; Aqvist J
    Biochemistry; 2008 Apr; 47(17):4898-906. PubMed ID: 18393533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering the enzymatic pKa of the ribosomal peptidyl transferase reaction utilizing a fluorinated puromycin derivative.
    Okuda K; Seila AC; Strobel SA
    Biochemistry; 2005 May; 44(17):6675-84. PubMed ID: 15850401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T-state inhibitors of E. coli aspartate transcarbamoylase that prevent the allosteric transition.
    Heng S; Stieglitz KA; Eldo J; Xia J; Cardia JP; Kantrowitz ER
    Biochemistry; 2006 Aug; 45(33):10062-71. PubMed ID: 16906764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence against stabilization of the transition state oxyanion by a pKa-perturbed RNA base in the peptidyl transferase center.
    Parnell KM; Seila AC; Strobel SA
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11658-63. PubMed ID: 12185248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ribosomal peptidyl transferase.
    Beringer M; Rodnina MV
    Mol Cell; 2007 May; 26(3):311-21. PubMed ID: 17499039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of ricin A-chain with pyrrolidine mimics of the oxacarbenium ion transition state.
    Roday S; Amukele T; Evans GB; Tyler PC; Furneaux RH; Schramm VL
    Biochemistry; 2004 May; 43(17):4923-33. PubMed ID: 15109250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetry at the active site of the ribosome: structural and functional implications.
    Agmon I; Bashan A; Zarivach R; Yonath A
    Biol Chem; 2005 Sep; 386(9):833-44. PubMed ID: 16164408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptidyl transferase activity of tRNA: a quantum chemical study.
    Bhattacharyya D; Das GK; Burma DP
    Indian J Biochem Biophys; 2001; 38(1-2):48-52. PubMed ID: 11563330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome.
    Yu H; Chan YL; Wool IG
    J Mol Biol; 2009 Feb; 386(3):802-13. PubMed ID: 19154738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of the translation termination reaction on the ribosome.
    Trobro S; Aqvist J
    Biochemistry; 2009 Dec; 48(47):11296-303. PubMed ID: 19883125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA.
    Schmeing TM; Huang KS; Strobel SA; Steitz TA
    Nature; 2005 Nov; 438(7067):520-4. PubMed ID: 16306996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of chirality of the sugar ring in the ribosomal peptide synthesis.
    Thirumoorthy K; Nandi N
    J Phys Chem B; 2008 Jul; 112(30):9187-95. PubMed ID: 18610967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic isotope effect analysis of the ribosomal peptidyl transferase reaction.
    Seila AC; Okuda K; Núñez S; Seila AF; Strobel SA
    Biochemistry; 2005 Mar; 44(10):4018-27. PubMed ID: 15751978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.