These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 14999477)

  • 41. Supporting diagnosis of attention-deficit hyperactive disorder with novelty detection.
    Lee HJ; Cho S; Shin MS
    Artif Intell Med; 2008 Mar; 42(3):199-212. PubMed ID: 18187311
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Parameterized estimation of long-range correlation and variance components in human serial interval production.
    Diniz A; Barreiros J; Crato N
    Motor Control; 2010 Jan; 14(1):26-43. PubMed ID: 20237401
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Time sense for short intervals during the follicular and luteal phases of the menstrual cycle in humans.
    Morita T; Nishijima T; Tokura H
    Physiol Behav; 2005 Jun; 85(2):93-8. PubMed ID: 15924908
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interval timing by an invertebrate, the bumble bee Bombus impatiens.
    Boisvert MJ; Sherry DF
    Curr Biol; 2006 Aug; 16(16):1636-40. PubMed ID: 16920625
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analyzing fractal dynamics employing R.
    Stadnytska T; Braun S; Werner J
    Nonlinear Dynamics Psychol Life Sci; 2010 Apr; 14(2):117-44. PubMed ID: 20346258
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences.
    Bengtsson SL; Ehrsson HH; Forssberg H; Ullén F
    Eur J Neurosci; 2004 May; 19(9):2591-602. PubMed ID: 15128413
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Common neural mechanisms for explicit timing in the sub-second range.
    Shih LY; Kuo WJ; Yeh TC; Tzeng OJ; Hsieh JC
    Neuroreport; 2009 Jul; 20(10):897-901. PubMed ID: 19451837
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Force related activations in rhythmic sequence production.
    Pope P; Wing AM; Praamstra P; Miall RC
    Neuroimage; 2005 Oct; 27(4):909-18. PubMed ID: 15993627
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Current-source density analysis of slow brain potentials during time estimation.
    Gibbons H; Rammsayer TH
    Psychophysiology; 2004 Nov; 41(6):861-74. PubMed ID: 15563339
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the influence of interaural differences on temporal perception of noise bursts of different durations.
    Schimmel O; Kohlrausch A
    J Acoust Soc Am; 2008 Feb; 123(2):986-97. PubMed ID: 18247901
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time perception in migraine sufferers: an experimental matched-pairs study.
    Anagnostou E; Mitsikostas DD
    Cephalalgia; 2005 Jan; 25(1):60-7. PubMed ID: 15606572
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Auditory dominance in the error correction process: a synchronized tapping study.
    Kato M; Konishi Y
    Brain Res; 2006 Apr; 1084(1):115-22. PubMed ID: 16556436
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Noise-induced increase in human auditory evoked neuromagnetic fields.
    Alain C; Quan J; McDonald K; Van Roon P
    Eur J Neurosci; 2009 Jul; 30(1):132-42. PubMed ID: 19558607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temporal evolution of the phase correction response in synchronization of taps with perturbed two-interval rhythms.
    Repp BH
    Exp Brain Res; 2011 Jan; 208(1):89-101. PubMed ID: 20981540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Perceptual biases for rhythm: The Mismatch Negativity latency indexes the privileged status of binary vs non-binary interval ratios.
    Pablos Martin X; Deltenre P; Hoonhorst I; Markessis E; Rossion B; Colin C
    Clin Neurophysiol; 2007 Dec; 118(12):2709-15. PubMed ID: 17950031
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Perceived time and temporal structure: Neural entrainment to isochronous stimulation increases duration estimates.
    Horr NK; Wimber M; Di Luca M
    Neuroimage; 2016 May; 132():148-156. PubMed ID: 26883062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fractal noises and motions in time series of presympathetic and sympathetic neural activities.
    Gebber GL; Orer HS; Barman SM
    J Neurophysiol; 2006 Feb; 95(2):1176-84. PubMed ID: 16306172
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neural systems supporting timing and chronometric counting: an FMRI study.
    Hinton SC; Harrington DL; Binder JR; Durgerian S; Rao SM
    Brain Res Cogn Brain Res; 2004 Oct; 21(2):183-92. PubMed ID: 15464350
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Motor timing variability increases in preclinical Huntington's disease patients as estimated onset of motor symptoms approaches.
    Hinton SC; Paulsen JS; Hoffmann RG; Reynolds NC; Zimbelman JL; Rao SM
    J Int Neuropsychol Soc; 2007 May; 13(3):539-43. PubMed ID: 17445303
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theories and models for 1/f(beta) noise in human movement science.
    Torre K; Wagenmakers EJ
    Hum Mov Sci; 2009 Jun; 28(3):297-318. PubMed ID: 19403189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.