These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 14999517)

  • 21. Osteon interfacial strength and histomorphometry of equine cortical bone.
    Bigley RF; Griffin LV; Christensen L; Vandenbosch R
    J Biomech; 2006; 39(9):1629-40. PubMed ID: 16019009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Osteon patterns in the diaphysis of the human femur].
    Saito S
    Anat Anz; 1984; 155(1-5):297-301. PubMed ID: 6721194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative study of the application of scanning acoustic microscopy and confocal laser scanning microscopy to the structural assessment of human bones.
    Hein HJ; Czurratis P; Schroth D; Bernstein A
    Ann Anat; 1995 Jul; 177(5):427-30. PubMed ID: 7645738
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Angular measurement of acoustic reflection coefficients by the inversion of V(z, t) data with high frequency time-resolved acoustic microscopy.
    Chen J; Bai X; Yang K; Ju BF
    Rev Sci Instrum; 2012 Jan; 83(1):014901. PubMed ID: 22299973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Double lamellae in trabecular osteons: towards a new method for age estimation by bone microscopy.
    Boel LW; Boldsen JL; Melsen F
    Homo; 2007; 58(4):269-77. PubMed ID: 17706650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential relationships among myocardial stiffness, the measured level of myocardial backscatter ("image brightness"), and the magnitude of the systematic variation of backscatter (cyclic variation) over the heart cycle.
    Holland MR; Wallace KD; Miller JG
    J Am Soc Echocardiogr; 2004 Nov; 17(11):1131-7. PubMed ID: 15502786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of particle number and brightness using a laser scanning confocal microscope operating in the analog mode.
    Dalal RB; Digman MA; Horwitz AF; Vetri V; Gratton E
    Microsc Res Tech; 2008 Jan; 71(1):69-81. PubMed ID: 17937391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional reconstruction of Haversian systems in ovine compact bone.
    Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2002 Dec; 40(5):309-15. PubMed ID: 15101447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Some aspects of the system of Haversian canals in the diaphysary compact bone in man.
    Albu I; Georgia R
    Morphol Embryol (Bucur); 1984; 30(1):17-20. PubMed ID: 6231472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the micromechanical elastic properties of potential bone-grafting materials.
    Nomura T; Katz JL; Powers MP; Saito C
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):29-34. PubMed ID: 15672390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of articular cartilage images assessed by high-frequency ultrasound microscope and scanning acoustic microscope.
    Hagiwara Y; Saijo Y; Ando A; Onoda Y; Suda H; Chimoto E; Hatori K; Itoi E
    Int Orthop; 2012 Jan; 36(1):185-90. PubMed ID: 21567149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interpreting cortical bone adaptation and load history by quantifying osteon morphotypes in circularly polarized light images.
    Skedros JG; Mendenhall SD; Kiser CJ; Winet H
    Bone; 2009 Mar; 44(3):392-403. PubMed ID: 19049911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasonic imaging using air-coupled P(VDF/TrFE) transducers at 2 MHz.
    Takahashi S; Ohigashi H
    Ultrasonics; 2009 May; 49(4-5):495-8. PubMed ID: 19215951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Initial report on surface and deep structure studies of human bone tissue using reflection-scan-acoustic microscopy (R-SAM). A comparison between light and ultrasonic microscopy imaging].
    Bonorden SW
    Dtsch Z Mund Kiefer Gesichtschir; 1987; 11(2):102-7. PubMed ID: 3329999
    [No Abstract]   [Full Text] [Related]  

  • 35. [Optical, scanning electron and atomic force microscopic observation of the microstructure of human humeral bone].
    Chen B; Pei GX; Liu XX; Qin Y; Wang QL
    Di Yi Jun Yi Da Xue Xue Bao; 2005 Apr; 25(4):403-6. PubMed ID: 15837638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new method to correlate histology with biomechanical properties in urethral tissue. An in-vitro study using light microscopy and scanning acoustic microscopy.
    Andersen T; Jensen AS; Lalla M; Jørgensen CS; Jørgensen TM
    APMIS Suppl; 2003; (109):35-8. PubMed ID: 12874947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective.
    Skedros JG; Holmes JL; Vajda EG; Bloebaum RD
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Sep; 286(1):781-803. PubMed ID: 16037990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Acoustic microscope and its medical applications].
    Tanaka M; Saijo Y
    Nihon Rinsho; 1995 Jun; 53(6):1527-35. PubMed ID: 7616673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone microstructure in juvenile chimpanzees.
    Mulhern DM; Ubelaker DH
    Am J Phys Anthropol; 2009 Oct; 140(2):368-75. PubMed ID: 19434755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scanning acoustic microscopy of neoplastic and inflammatory cutaneous tissue specimens.
    Barr RJ; White GM; Jones JP; Shaw LB; Ross PA
    J Invest Dermatol; 1991 Jan; 96(1):38-42. PubMed ID: 1987294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.