BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

895 related articles for article (PubMed ID: 14999734)

  • 1. Evaluation of glassy-state dynamics from the width of the glass transition: results from theoretical simulation of differential scanning calorimetry and comparisons with experiment.
    Pikal MJ; Chang LL; Tang XC
    J Pharm Sci; 2004 Apr; 93(4):981-94. PubMed ID: 14999734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics and Physical Stability of Pharmaceutical Co-amorphous Systems: Correlation Between Structural Relaxation Times Measured by Kohlrausch-Williams-Watts With the Width of the Glass Transition Temperature (ΔT
    Chieng N; Teo X; Cheah MH; Choo ML; Chung J; Hew TK; Keng PS
    J Pharm Sci; 2019 Dec; 108(12):3848-3858. PubMed ID: 31542436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of dynamics in complex lyophilized formulations: I. Comparison of relaxation times measured by isothermal calorimetry with data estimated from the width of the glass transition temperature region.
    Chieng N; Mizuno M; Pikal M
    Eur J Pharm Biopharm; 2013 Oct; 85(2):189-96. PubMed ID: 23608636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of pharmaceutical amorphous solids: the study of enthalpy relaxation by isothermal microcalorimetry.
    Liu J; Rigsbee DR; Stotz C; Pikal MJ
    J Pharm Sci; 2002 Aug; 91(8):1853-62. PubMed ID: 12115812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical and experimental considerations on the enthalpic relaxation of organic glasses using differential scanning calorimetry.
    Mao C; Chamarthy SP; Byrn SR; Pinal R
    J Phys Chem B; 2010 Jan; 114(1):269-79. PubMed ID: 20017467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glass fragility and the stability of pharmaceutical preparations--excipient selection.
    Hatley RH
    Pharm Dev Technol; 1997 Aug; 2(3):257-64. PubMed ID: 9552453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Bonnet PA; Jones W; Motherwell WD; Zifferer G
    J Phys Chem B; 2006 Oct; 110(39):19678-84. PubMed ID: 17004837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependence of molecular mobility during structural relaxation and its impact on organic amorphous solids: an investigation based on a calorimetric approach.
    Mao C; Chamarthy SP; Pinal R
    Pharm Res; 2006 Aug; 23(8):1906-17. PubMed ID: 16858653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitrification in a wide cooling rate range: the relations between cooling rate, relaxation time, transition width, and fragility.
    Schawe JE
    J Chem Phys; 2014 Nov; 141(18):184905. PubMed ID: 25399160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling between chemical reactivity and structural relaxation in pharmaceutical glasses.
    Shamblin SL; Hancock BC; Pikal MJ
    Pharm Res; 2006 Oct; 23(10):2254-68. PubMed ID: 16941232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Jones W; Motherwell WD; Zifferer G
    Carbohydr Res; 2007 Aug; 342(11):1470-9. PubMed ID: 17511976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat capacity in the glass transition range modeled on the basis of heterogeneous dynamics.
    Richert R
    J Chem Phys; 2011 Apr; 134(14):144501. PubMed ID: 21495758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the fragility index of indomethacin by DSC using the heating and cooling rate dependency of the glass transition.
    Ramos JJ; Taveira-Marques R; Diogo HP
    J Pharm Sci; 2004 Jun; 93(6):1503-7. PubMed ID: 15124208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural relaxation in the glass transition region of water.
    Giovambattista N; Angell CA; Sciortino F; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011203. PubMed ID: 16089947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative investigation by two analytical approaches of enthalpy relaxation for glassy glucose, sucrose, maltose, and trehalose.
    Kawai K; Hagiwara T; Takai R; Suzuki T
    Pharm Res; 2005 Mar; 22(3):490-5. PubMed ID: 15835755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calorimetric investigation of the structural relaxation of amorphous materials: evaluating validity of the methodologies.
    Kawakami K; Pikal MJ
    J Pharm Sci; 2005 May; 94(5):948-65. PubMed ID: 15793805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorimetric study and modeling of molecular mobility in amorphous organic pharmaceutical compounds using a modified Adam-Gibbs approach.
    Mao C; Chamarthy SP; Pinal R
    J Phys Chem B; 2007 Nov; 111(46):13243-52. PubMed ID: 17967007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of global and local mobility in amorphous sucrose and trehalose as determined by differential scanning calorimetry.
    Dranca I; Bhattacharya S; Vyazovkin S; Suryanarayanan R
    Pharm Res; 2009 May; 26(5):1064-72. PubMed ID: 19130185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid state chemistry of proteins: I. glass transition behavior in freeze dried disaccharide formulations of human growth hormone (hGH).
    Pikal MJ; Rigsbee DR; Roy ML
    J Pharm Sci; 2007 Oct; 96(10):2765-76. PubMed ID: 17621677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.